Appendix I
 Traffic Technical Memorandum

Transportation Technical Memorandum Nelson Sloan Quarry Restoration Project, San Diego

Prepared for:

California Department of Parks and Recreation
California Natural Resources Agency
Department of Parks and Recreation, Southern Service Center 2797 Truxtun Road, Barracks 26
San Diego, California 92106
Contact: Chris Peregin

Prepared by:

605 Third Street
Encinitas, California 92024
Contact: Dennis Pascua, Transportation Services Manager

JULY 2020

Printed on 30\% post-consumer recycled material.

Table of Contents

SECTION PAGE NO.
1 INTRODUCTION 1
1.1 Purpose and Scope 1
1.2 Project Description, Location and Study Area 2
1.3 Analysis Methodology 7
1.3.1 Vehicle Miles Traveled (VMT) Analysis for CEQA 7
1.3.2 Level of Service (LOS) for General Plan Consistency 7
1.4 Improvements for Transportation Impacts 9
1.4.1 VMT Impacts 9
1.4.2 Level of Service Inconsistency 9
2 PROJECT TRAFFIC AND VMT SCREENING ANALYSIS 11
2.1 Trip Generation 11
2.2 Trip Distribution and Assignment 13
2.3 Vehicle Miles Traveled Screening. 13
3 EXISTING CONDITIONS 23
3.1 Roadway System 23
3.2 Transit, Bicycle and Pedestrian Facilities 27
3.2.1 Transit Facilities 27
3.2.2 Pedestrian Facilities 27
3.2.3 Bicycle Facilities 27
3.3 Existing Traffic Volumes 31
3.4 Intersection Operations 31
4 OPENING YEAR CONDITIONS 35
4.1 Cumulative Projects 35
4.1.1 Trip Generation 36
4.1.2 Trip Distribution and Assignment 37
4.2 Traffic Volumes 37
4.3 Intersection Operations 37
5 OPENING YEAR PLUS PROJECT CONDITIONS 45
5.1 Traffic Volumes 45
5.2 Intersection Operations 45
6 PROJECT ACCESS ANALYSIS 49
7 IMPROVEMENT MEASURES 53
8 FINDINGS 55
9 REFERENCES 57

APPENDICES

A Traffic Counts
B Data from CDPR - Goat Canyon Sediment Management Site
C Synchro Worksheets

FIGURES

1 Project Location and Study Area 5
2 Project Trip Distribution and Assignment - Workers 15
3 Project Trip Distribution and Assignment - Off-Site Trucks. 17
4 Project Trip Distribution and Assignment - On-Site Trucks 19
5 Project Trip Assignment - Total 21
6 Intersection Traffic Control and Geometrics 25
7 Bicycle and Transit Facilities 29
8 Existing Peak Hour Traffic Volumes 33
9 Cumulative Projects Location 39
10 Cumulative Projects Peak Hour Traffic Volumes 41
11 Opening Year Peak Hour Traffic Volumes 43
12 Opening Year Plus Project Peak Hour Traffic Volumes 47
13 Stopping Sight Distance 51
TABLES
1 Levels of Service for Intersections using HCM Methodology 8
2 Worker and Truck Estimates for Sediment Management Sites and Proposed Project 11
3 Project Trip Generation 12
4 VMT Screening for Project 14
5 Existing Average Daily Traffic 31
6 Existing Weekday Peak Hour Intersection LOS 31
7 Description of Cumulative Projects 35
8 Cumulative Projects Trip Generation Summary 36
9 Opening Year Peak Hour Intersection LOS 37
10 Opening Year plus Project Peak Hour Intersection Level of Service 46
11 Project Access Peak Hour Intersection LOS 49

1.1 Purpose and Scope

The purpose of this memorandum is to analyze the traffic effects associated with the proposed Nelson Sloan Quarry Restoration Project (proposed project) located in the Tijuana River Valley Community in the City of San Diego. The project site is located on approximately 40 acres owned by the County of San Diego. The lead agency for the project is the California Department of Parks and Recreation (CDPR). As the lead agency, CDPR is proposing the beneficial re-use of excess sediment excavated from on-going and proposed sediment management activities in the Tijuana River Valley towards landform and habitat restoration on the abandoned Nelson Sloan Quarry site. This would allow the excess sediment that is currently hauled to offsite to regional landfills or construction sites from the City, County, State and Federal entities (hereby referred as sediment management sites) in Tijuana River Valley (TRV) to be placed in the Nelson Sloan Quarry site as an option. The proposed project would allow these entities to place appropriate material on the quarry site and thereby improve TRV land managers ability to conserve and restore high-quality habitat impacted by sedimentation, and better protect valley-wide infrastructure from sedimentation and flooding.

This memorandum evaluates the proposed project's effects related to the traffic generated by workers and trucks that would be required for the above-mentioned project activities. The objectives of this memorandum are:

- Document existing traffic conditions in the study area;
- Describe active transportation and transit facilities in the vicinity of the project site;
- Estimate trip generation, distribution, and assignment characteristics for the average operational phase of the proposed project (for purposes of this memorandum, "operational" refers to the 10 to 15-year timeframe of reclamation and restoration activities on the proposed project site);
- Provide a Vehicle Miles Traveled (VMT) screening analysis per Senate Bill (SB) 743 requirements under California Environmental Quality Act (CEQA);
- Analyze the traffic effects that would occur under the Opening Year without and with Project conditions; and,
- If required, identify improvement and traffic control measures for effected study area intersections.

This memorandum has been prepared per the County of San Diego Transportation Study Guidelines, May 2020 (Draft), and the City of San Diego Transportation Study Manual, June 2020 (Draft) requirements, and is consistent with the current requirements of all applicable City and State regulations, including SB 743 requirements CEQA.

Dudek analyzed the selected study area intersections for the following study scenarios:

Existing Condition

The memorandum includes a description of existing traffic conditions in the site vicinity, including the existing roadway system, existing weekday AM and PM peak hour traffic volumes, and traffic operations. The existing condition is representative of the year 2020 (it should be noted that the traffic counts were collected in January, 2020 before COVID-19 restrictions were in effect). However, it was noted that there was nominal truck traffic observed during this period due to seasonal nature of sediment removal activities (generally between August November). Therefore, worker and truck traffic from the sediment management sites was estimated (using best available data from truck activity logs and other reports) and added to the opening year conditions described below.

Opening Year no Project Condition

The Opening Year condition includes traffic volumes and operations within a short-term horizon period where the proposed project would be operational. An ambient annual growth factor of one percent (1\%) generally based on the San Diego Association of Governments (SANDAG) traffic volume forecasts in the study was applied to the existing year (2020) traffic volumes over the course of two years to estimate opening year baseline traffic volumes in the year 2022.

Along with ambient growth, traffic generated by other approved and pending projects along with the traffic from the existing sediment management sites in the study area was also added to existing traffic volumes. The approved or pending projects are developments in the review process, but not fully approved; or, projects that have been approved, but not fully constructed or occupied. Worker and truck traffic from the sites involving on-going sediment removal activities near the proposed project was added to the opening year traffic conditions.

Opening Year plus Project Condition

This condition includes analysis of traffic operations under the Opening Year condition (described above) with project traffic added to the AM and PM peak hour traffic volumes. It should be noted that under the Opening Year plus Project conditions a majority of truck traffic from the above-mentioned sediment management sites would travel to the proposed project instead of traveling to other construction sites or landfills in the San Diego County. Therefore, the proposed project would generate nominal new truck trips and divert most of the existing truck trips from the sediment management sites to the project site. The project effects to the roadway network under this condition were used as the basis for determining if any traffic improvements or control plan would be required.

1.2 Project Description, Location and Study Area

The project site is located within the southeastern corner of Tijuana River Valley Regional Park in the in the City of San Diego. It is located west of Interstate (I) 5. Regional access to the project is provided by I-5, I-805 and State Route 905 . Local access to the proposed project would be primarily via Dairy Mart Road which turns into Monument Road, at the Dairy Mart Road/Monument Road intersection. Figure 1 shows the project location and site, study area, and regional location of the project site. Figure 1 also illustrates the locations of the sediment management sites in the vicinity of the project site.

The proposed project operations would include placement of processed sediment excavated from management sites as part of on-going annual channel and basin maintenance activities in the Tijuana River Valley. Under existing conditions, most of the sediment excavated from management sites is hauled out of the valley. With the implementation of the proposed project, this sediment would be re-used towards the restoration of the quarry and construction of natural landforms on the quarry site. Therefore, the proposed project would reduce the need to haul sediment from in-valley sites to landfill or construction sites located outside of the TRV in the County.

Based on review of historic data of sediment removal activities, maximum export (in cubic yards) of material anticipated for each sediment management site and required haul truck trips, capacity of haul trucks (in cubic yards) and the project's operational phasing and schedule, and as shown in Section 2 Project Traffic and VMT Screening Analysis, it is anticipated that a daily average of 14 workers, 3 vendor trucks and 6 haul trucks would be required over the life of the project. The project related activities will occur approximately between 6:00 am and 6:00 pm over the weekdays, Monday through Friday.

Based on the location of the project site and transportation network that provides regional and local access to it, study area for assessing the traffic effects of the proposed project was delineated. As illustrated in Figure 1, the study area is comprised of the following nine (9) intersections:

Intersections

1. Interstate 5 (I-5) northbound ramps/San Ysidro Boulevard (Caltrans)
2. Dairy Mart Road/San Ysidro Boulevard (City of San Diego)
3. Dairy Mart Road/l-5 southbound ramps (Caltrans)
4. Dairy Mart Road/Servando Avenue (City of San Diego)
5. Dairy Mart Road/Camino De La Plaza (City of San Diego)
6. Clearwater Way/Dairy Mart Road (City of San Diego)
7. Monument Road/Dairy Mart Road (City of San Diego)
8. Hollister Street/Monument Road (City of San Diego)
9. Hollister Street/Tocayo Avenue (City of San Diego)

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

1.3 Analysis Methodology

1.3.1 Vehicle Miles Traveled (VMT) Analysis for CEQA

The Governor's Office of Planning and Research (OPR) approved the addition of new Section 15064.3, "Determining the Significance of Transportation Impacts" to the State's CEQA Guidelines, compliance with which is required beginning July 1, 2020. The Updated CEQA Guidelines state that "generally, vehicle miles traveled (VMT) is the most appropriate measure of transportation impacts" and define VMT as "the amount and distance of automobile travel attributable to a project." It should be noted that "automobile" refers to on-road passenger vehicles, specifically cars and light trucks. OPR has clarified in the Technical Advisory and recent informational presentations that heavyduty truck VMT is not required to be included in the estimation of a project's VMT. Other relevant considerations may include the effects of the project on transit and non-motorized traveled.

The new Section 15064.3(b), "Criteria for Analyzing Transportation Impacts," states "If existing models or methods are not available to estimate the vehicle miles traveled for the particular project being considered, a lead agency may analyze the project's vehicle miles traveled qualitatively. Such a qualitative analysis would evaluate factors such as the availability of transit, proximity to other destinations, etc. For many projects, a qualitative analysis of construction traffic may be appropriate."

To aid in this transition, OPR released a Technical Advisory on Evaluating Transportation Impacts in CEQA (December of 2018) (Technical Advisory). Based on the technical Advisory, the City of San Diego and County of San Diego have adopted VMT specific guidelines and thresholds. However, since CDPR is the lead agency, the guidance provided by the State has also been used to determine if the proposed project would require a VMT analysis. The details of applicable VMT screening and analysis has been provided in Chapter 3 of this memorandum.

1.3.2 Level of Service (LOS) for General Plan Consistency

Level of Service (LOS) is a tool used to describe the operating characteristics of the street system in terms of the level of congestion or delay experienced by vehicles with service levels range from A through F.

1.3.2.1 Intersection Analysis

The Highway Capacity Manual, 6th Edition (HCM 6) methodology was used to assess level of service for intersections within the study area per requirement of the respective jurisdiction.

The HCM intersection analysis methodology was used to analyze the operation of signalized and unsignalized study intersections. The HCM method used to determine LOS at the intersections determines the average control delay (in seconds) a driver may experience at the intersection. The HCM analysis methodology describes the operation of an intersection using a range of LOS from LOS A (free-flow conditions) to LOS F (severely congested conditions), based on the corresponding control delay experienced per vehicle for unsignalized intersections. The Synchro 10 LOS software was used to determine intersection LOS. Synchro is consistent with the HCM 6 methodology (Transportation Research Board 2016). Table 1 shows the LOS values by delay ranges for unsignalized and signalized intersections under the HCM methodology.

Table 1. Levels of Service for Intersections using HCM Methodology

Level of Service	Unsignalized Intersections Control Delay (in seconds per vehicle)	Signalized Intersections Control Delay (in seconds per vehicle)
A	<10.0	<10.0
B	>10.0 to <15.0	>10.0 to <20.0
C	>15.0 to <25.0	>20.0 to <35.0
D	>25.0 to <35.0	>35.0 to <55.0
E	>35.0 to <50.0	>55.0 to <80.0
F	>50.0	>80.0

Source: HCM 6
Additionally, the following parameters were used in the operational analysis for the intersections per requirements specified in the City of San Diego TSM:

- The morning and afternoon peak commute hours were analyzed, for peak hour between 7:00-9:00 p.m. and 4:00-6:00 p.m.
- Peak hour factors (PHF) from traffic counts collected in January 2020 were used in the Existing and Opening Year (with and without project) scenarios.
- Peak hour truck percentages for each turning movement were obtained from the field data collected in January 2020. However, since the truck traffic in the study area is seasonal and was not accounted for in the counts conducted in January 2020, the minimum recommended value of 3% was applied to Existing and Opening Year (with and without project) conditions.
- Existing non-PCE peak hour traffic volumes were analyzed using HCM methodology. These volumes were adjusted to include a "heavy vehicle percentage" within Synchro. Use of the heavy vehicle percentage factor within Synchro more accurately estimates the operation of an intersection that is being evaluated with the HCM methodology. However, the truck traffic from the project and other sites was converted into PCE volumes and added to the existing non-PCE traffic volumes to obtain Opening Year (with and without project) traffic volumes.
- Signal timing and cycle length data was obtained from field data collected in January 2020.

1.3.2.2 General Plan Consistency Requirements

The following section provides the consistency requirements for the City of San Diego and County of San Diego that would apply to the proposed project.

City of San Diego General Plan Mobility Element

The level of service guideline is established in the City of San Diego General Plan Mobility Element (June 2015). According to Mobility Element Policy for Project Review Considerations:
"ME-C.9. Implement best practices for multi-modal quality/level of service analysis guidelines to evaluate potential transportation improvements from a multi-modal perspective in order to determine optimal improvements that balance the needs of all users of the right of way."

The City has not adopted a specific LOS standard and performance of signalized and unsignalized intersections is evaluated on a case-by-case basis.

County of San Diego General Plan Mobility Element

The level of service guideline is established in the County of San Diego General Plan Mobility Element (August 2011). According to Circulation Element Policy for Project Review Considerations:
"Goal M2 - Responding to Physical Constraints and Preservation Goals. Level of Service Criteria. Require development projects to provide associated road improvements necessary to achieve a level of service of "D" or higher on all Mobility Element roads except for those where a failing level of service has been accepted by the County."

1.4 Improvements for Transportation Impacts

1.4.1 VMT Impacts

To mitigate VMT impacts, the project applicant would be required to reduce VMT, which can be done by either reducing the number of automobile trips generated by the project or by reducing the distance that people drive. The following strategies are available to achieve this:

- Modify the project's site design and built physical characteristics to reduce VMT generated by the project.
- Implement programmatic Transportation Demand Management (TDM) measures to reduce VMT generated by the project.

1.4.2 Level of Service Inconsistency

The City of San Diego requires that off-site improvements should address access, circulation and safety for all modes in order to accommodate project traffic. Improvements to signalized and unsignalized intersections should be based on conflicting pedestrian movements, existing and proposed bicycle facilities, transit priority, protected or permissive turn movement phasing, number of lanes, speed of prevailing traffic and expected queue lengths.

The County of San Diego requires traffic operational impacts and improvements should be identified based on the triggers specified in the guidelines in the Local Mobility Analysis for signalized intersections and unsignalized intersections.

INTENTIONALLY LEFT BLANK

2
 Project Traffic and VMT Screening Analysis

This section documents the trip generation, distribution, and assignment of project traffic. The section also provides a Vehicles Miles Traveled (VMT) screening analysis based on the proposed project's trip generation using the State, County and City of San Diego's recently adopted CEQA transportation guidelines.

2.1 Trip Generation

The Institute of Transportation Engineers' Trip Generation manual does not contain trip rates for quarry-related activities. Project-related traffic includes the number of workers, and the amount of vendor and haul truck traffic that would be generated to and from the site's daily and during the AM and PM peak hours. The operational activities of the site for quarry reclamation, landform creation and habitat restoration include sediment placement, grading, and revegetation. Therefore, the proposed project's operational phasing and schedule used in the Air Quality analysis was obtained. This phasing and schedule included worker and truck trips for each phase of the proposed project over a 15-year period and included the number of workers, vendor trucks (material and equipment delivery) and haul trucks (soil export/sediment management) that would be required for the proposed project's operational activities. As shown in Table 2, a daily average of 14 workers, 3 vendor trucks and 72 haul trucks would be required for most phases of the project-related activities.

As mentioned previously, the proposed project would allow include placement of processed sediment excavated from management sites as part of on-going annual channel and basin maintenance activities in the Tijuana River Valley. Therefore, the sediment excavated from management sites that is hauled out of the valley under existing conditions would be re-used towards the restoration of the quarry and creation of natural landforms on the quarry site. Therefore, the proposed project would reduce the need to haul sediment from in-valley locations to other landfill or construction sites located outside of the TRV in the County of San Diego. To estimate this reduction in truck trips, worker and truck traffic from the sediment management sites was estimated using available data sources. These included truck haul logs provided by Goat Canyon Sediment Basin administrators (CDPR) and maximum export data (in cubic yards) for other sites (included in Table 2 and shown on Figure 1) provided in the City of San Diego Municipal Waterways and Maintenance Plan (MWMP) Final EIR (City of San Diego 2020). Based on review of available data for these sites, an estimate of workers and trucks was prepared and is shown in Table 2.

Table 2. Worker and Truck Estimates for Sediment Management Sites and Proposed Project

Site	No. of Workers	Daily Vendor Trucks	Total Haul Trucks
Sediment Management Sites			
Goat Canyon Sediment Basin	15	5	32
Smuggler's Gulch Emergency and Pilot Channel (City of San Diego)	12	5	25
Smuggler's Gulch (County of San Diego)	2	1	4
United States International Boundary and Water Commission (USIBWC)	5	1	5
Sub-total	34	12	66

Table 2. Worker and Truck Estimates for Sediment Management Sites and Proposed Project

Site	No. of Workers	Daily Vendor Trucks	Total Haul Trucks
Proposed Project	14	3	6^{1}
Nelson Sloan Quarry Restoration			

Notes:

1 The daily net haul trucks $(72-66=6)$ were estimated by subtracting the haul trucks generated by existing sediment management activities from haul trucks that would be generated by the proposed project.

As shown in Table 2, a daily average of approximately 34 workers, 12 vendor trucks and 66 haul trucks would be generated to and from the sediment management sites. The approximately 66 haul trucks from these sites would travel to the proposed project site once operational. Therefore, the net new haul truck traffic estimated for the proposed project would reduce to 6 haul trucks from estimated 72 trucks that are required for the operational phases.

As estimated, a daily average of 14 workers, 3 vendor trucks and 6 net new haul trucks would be required for most phases of the project-related activities. The project-related activities will occur between 6:00 am and 6:00 pm over the weekdays, Monday through Friday. Based on the work schedule, some of the workers would not travel during the AM or the PM peak periods. However, in order to provide a conservative analysis, all workers (i.e., 14 workers) were assumed to arrive during the AM peak hour and leave the site during the PM peak hour. All truck trips were average over the 8 -hour workday to estimate peak hour trips with 100% inbound during the AM peak hour and 100% outbound during the PM peak hour. Passenger car equivalent (PCE) factors were used to account for the project's truck traffic and provide a more realistic measurement in terms of the impact of project-related truck traffic. All vendor truck trips were converted to PCE trips using a factor of 2.5 and all haul truck trips were converted to PCE trips using a factor of 3.0. The calculation of project trip generation estimates is shown in Table 3.

Table 3. Project Trip Generation

Vehicle Type	Daily Quantity	Daily Trips	AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Trip Generation								
Workers	14 workers	28	14	0	14	0	14	14
Vendor Trucks	3 Trucks	6	1	0	1	0	1	1
Haul Trucks	6 Trucks	12	2	0	2	0	2	2
	Total Trips	46	17	0	17	0	17	17
Existing On-Site Haul Trucks	66 Trucks	132	17	0	17	0	17	17
Trip Generation w/PCE								
Workers (1.0 PCE) ${ }^{1}$	14 workers	28	14	0	14	0	14	14
Vendor Trucks (2.5 PCE) ${ }^{2}$	3 Trucks	15	3	0	3	0	3	3
Haul Trucks (3.0 PCE) ${ }^{3}$	6 Trucks	36	6	0	6	0	6	6
Total Trips (w/PCE)		79	23	0	23	0	23	23
Existing On-Site Haul Trucks (3.0 PCE) ${ }^{3}$	66 Trucks	396	51	0	51	0	51	51

[^0]1 PCE factor of 1 was utilized for worker passenger cars
2 PCE factor of 2.5 was utilized for vendor trucks
3 PCE factor of 3.0 was utilized for haul trucks

As shown in the Table 3, the proposed project would generate 46 daily trips, 17 AM peak hour trips (17 inbound and 0 outbound), and 17 trips during the PM peak hour (0 inbound and 17 outbound). With the application of PCE factors to truck trips, the project would generate 79 total PCE daily trips, and 23 PCE trips during the AM peak hour (23 inbound and 0 outbound) and 23 PCE trips during the PM peak hour (0 inbound and 23 outbound).

2.2 Trip Distribution and Assignment

Project trip distribution percentages were based on logical travel paths to commute corridors in the study area as well as analysis of haul truck data provided by CDPR for one of the existing sites (i.e., Goat Canyon Sediment Basin).

Construction-related truck traffic will access the study area via $1-5$, at its existing ramps at Dairy Mart Road and use Dairy Mart Road and Monument Road to access the project site via the existing driveway along Monument Road.

Project trips were assigned to the study area intersections by applying the project trip generation estimates to the trip distribution percentages at each study area intersection.

- The project trip distribution and trip assignment for workers is shown in Figure 2.
- The project trip distribution and trip assignment for off-site trucks is shown in Figure 3.

The project trip distribution and trip assignment for on-site trucks that primarily travel to and from other sediment management sites is shown in Figure 4.

The total project trip assignment for worker and trucks (on-site and off-site) is shown in Figure 5.

$2.3 \quad$ Vehicle Miles Traveled Screening

OPR has approved the addition of new Section 15064.3, "Determining the Significance of Transportation Impacts" to the state's CEQA Guidelines, compliance with which is required beginning July 1, 2020. The Updated CEQA Guidelines state that "generally, vehicle miles traveled (VMT) is the most appropriate measure of transportation impacts" and define VMT as "the amount and distance of automobile travel attributable to a project." Per OPR, heavy vehicle traffic is not required to be included in the estimation of a project's VMT.

The OPR's Technical Advisory suggests that agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing. The guidance recommended by OPR has been adopted and modified by the County of San Diego in the Transportation Study Guidelines, May 2020 (Draft) and the City of San Diego in the Transportation Study Manual, June 2020 (Draft) guidelines for VMT requirements to be better suited to local conditions.

The determination of minimum project size for VMT analysis is described below in Table 6 for State, County and City. The level of VMT analysis in Table 4 is recommended based on project size (expressed in terms of Average Daily Trips generated by the project). It should be noted that the State and County recommend that any project generating 110 or less average daily trips may be presumed to have a less than significant impact absent substantial evidence to the contrary. The City of San Diego recommends that any project generating 300 or less average daily trips may be presumed to have a less than significant impact and therefore be screening from a detailed VMT analysis.

Based on the small project screening criteria used by State, County and the City, since the project would generate 79 average daily trips, it can be presumed to have a less than significant VMT impact.

Table 4. VMT Screening for Project

State Guidance	County of San Diego	City of San Diego
Small Project - projects that generate	Small Employment Project - Less	
or attract fewer than 110 trips per day		
than 110 daily vehicle trips (trips are		
generally may be assumed to cause a		
less-than significant transportation		
impact.	Small Project - The project is a after any alternativer of vehicle trips small project defined as generating	
gened adjustments are applied)		
unadjusted drivewan 300 daily		
the City of San Diego trip using		
generation rates/procedures.		

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

This section describes existing conditions within the study area. Characteristics are provided for the existing roadway system, daily roadway segment traffic volumes, peak hour traffic volumes, and traffic operations.

3.1 Roadway System

Characteristics of the existing street system in the study are described below. Figure 6 shows the traffic control and geometrics for intersections in the study area.

Interstate (I-) 5 is a north-south, generally eight-lane, divided freeway located northeast of the project site. The posted speed limit is 65 mph . Within California, $l-5$ connects San Diego, Los Angeles, Sacramento, and the eastern portion of the San Francisco Bay Area. I-5 has a local interchange at Dairy Mart Road/ San Ysidro Boulevard.

State Route (SR-) 905 serves as a major east-west connection between I-5 and the Otay Mesa community. SR-905 has an interchange with I-5 that can be accessed from Tocayo Avenue.

Dairy Mart Road is classified as a Collector in the Tijuana River Valley Community Circulation Plan. It is constructed as a four-lane roadway that runs in the north-south direction from Beyer Boulevard to Camino de la Plaza. South of Camino de la Plaza, the roadway is two lane and between West San Ysidro Boulevard and Camino de la Plaza is not yet built to its ultimate classification. This road provides access to the Tijuana River Valley. Sidewalks are provided along both sides of the roadway between Beyer Boulevard and West San Ysidro Boulevard. Parking is not provided along the entire roadway segment. The posted speed limit between the l-5 interchange and Camino de la Plaza is 40 mph . Dairy Mart Road has a Class II bicycle lane between Beyer Boulevard and West San Ysidro Boulevard.

Monument Road is an east-west two-lane roadway classified as a Collector in the Tijuana River Valley Community Circulation Plan. Dairy Mart Road becomes Monument Road, approximately where the Ranger Station is located just west of the Dairy Mart Road/Monument Road intersection. Monument Road provides an east-west access through Tijuana River Valley. Monument Road is also the main access road utilized by the U.S. Border Patrol. The two-lane roadway is not constructed with sidewalk, curb or gutter and the posted speed limit is $30-35 \mathrm{mph}$.

Hollister Road is a north-south two-lane roadway classified as a Collector in the Tijuana River Valley Community Circulation Plan. The roadway segment of Hollister Road from Tocayo Avenue to Honestidad Road, the two-lane roadway has a painted median. The roadway is built with paved sidewalk, curb and gutter. There is a Class 2 bike lane and the posted speed limit is 30 mph . The roadway segment of Hollister Road from just north of Sunset Avenue to Monument Road is built as a two-lane roadway and is not constructed with sidewalk, curb or gutter. The posted speed limit is 30 mph .

Other roadways in the area include Saturn Boulevard and Sunset Avenue. Saturn Boulevard is a disjointed road that traverses north-south from Monument Road, then east-west from Hollister Street connecting to Sunset Avenue. Sunset Avenue provides an east-west connection through the Tijuana River Valley and is approximately 1.8 miles long.

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

3.2 Transit, Bicycle and Pedestrian Facilities

Existing bicycle and transit facilities are shown on Figure 7. Existing bicycle and pedestrian volumes counts obtained at the study area intersections are provided in Appendix A.

3.2.1 Transit Facilities

The Metropolitan Transit System (MTS) provides public transit service within the study area. Bus routes (906 and 907) serve the area with stops along San Ysidro Boulevard and Camino de la Plaza. The nearest bus stop to the project site is located approximately 1.5 miles far along San Ysidro Boulevard, near the Dairy Mart Road/San Ysidro Boulevard intersection. Bus Route 906 and 907 operates between Iris Transit Center - San Ysidro loop via Beyer Boulevard and San Ysidro Boulevard.

The Blue Line of the San Diego Trolley has station at the Iris Transit Center and the Beyer Boulevard Trolley Station. The Beyer Boulevard Transit Station is located approximately 2.5 miles from the proposed project. The South Line portion of the San Diego Arizona Eastern (SD\&AE) Railway provides a rail connection for the region's freight operations between the U.S.-Mexico border at San Ysidro. MTS operates the Trolley Blue Line using the South Line railway for most hours of the day. During nighttime hours, the South Line functions as a freight line and operates on the tracks within the San Ysidro area.

3.2.2 Pedestrian Facilities

The proposed project and its immediate vicinity do not serve many active transportation users. There are no sidewalks along Monument Road near the project access. Dairy Mart Road has discontinuous paved sidewalk along one side of the roadway between San Ysidro Boulevard and Monument Road. The proposed project is near Tijuana River Valley Regional Park which consists of a network of formal trails that provide many settings for hiking, biking, riding horses, and other passive recreation. A discontinuous multi-purpose trail exists along Monument Road which is used for recreation purposes.

3.2.3 Bicycle Facilities

The City of San Diego is serviced by Class 1 (Bike path), Class 2 (Bike lane) and Class 3 (Bike route) bicycle facilities. There are discontinuous bicycle facilities in the study area. Within the study area, following are the existing bicycle facilities:

- Dairy Mart Road between Beyer Boulevard to Monument Road
- Camino de la Plaza between Dairy Mart Road and San Ysidro Boulevard
- San Ysidro Boulevard from Dairy Mart Road to Camino de la Plaza
- Hollister Avenue from south of Tocayo Avenue to Coronado Avenue
- Tocayo Avenue from Hollister Avenue to Oro Vista Road

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

3.3 Existing Traffic Volumes

The existing traffic controls and geometrics at the study area intersections are shown in Figure 6. Existing weekday peak hour turn movement counts at the study intersections and average daily traffic (ADT) counts at the roadway segments near project site were conducted in January 2020, during a typical non-holiday week while area schools were in-session. It should be noted that the traffic counts were collected in January 2020 before COVID-19 restrictions were in effect. Peak hour truck percentages for each turning movement were obtained from the field data collected in January 2020. However, since the truck traffic in the study area is seasonal and was not accounted for in the counts conducted, the minimum recommended value of 3% was applied to Existing and Opening Year (with and without project) conditions.

Raw traffic count worksheets are provided in Appendix A. This analysis focuses on the weekday daily, AM (7:00 a.m. to 9:00 a.m.) and the PM (4:00 p.m. to 6:00 p.m.) peak periods. The peak periods represent the highest volume of traffic for the adjacent street system.

Existing weekday AM and PM peak hour volumes are summarized on Figure 8 and existing ADTs are summarized in Table 5.

Table 5. Existing Average Daily Traffic

Roadway Segment	Existing ADT (No. of Vehicles)
Dairy Mart Road between l-5 to Camino De La Plaza	9,793
Dairy Mart between Camino De La Plaza and Clearwater	1,011
Dairy Mart between Clearwater and Monument Rd	702
Monument Road between Hollister and Dairy Mart	529
Hollister Street between Tocayo and Sunset	3,453
Hollister Street between Sunset and Monument	624

Notes: ADT - Average Daily Traffic

3.4 Intersection Operations

An intersection LOS analysis was prepared for the existing conditions using the HCM methodologies discussed in Section 1.3.2. Table 6 shows the results of the existing conditions LOS analysis. LOS worksheets are provided in Appendix C.

Table 6. Existing Weekday Peak Hour Intersection LOS

No.	Intersection	Traffic Control	AM Peak		PM Peak	
			Delay ${ }^{1}$	LOS ${ }^{2}$	Delay ${ }^{1}$	LOS ${ }^{2}$
1	I-5 northbound ramps/San Ysidro Boulevard	Signal	24.9	C	16.9	B
2	Dairy Mart Road/San Ysidro Boulevard	Signal	33.1	C	26.0	C
3	Dairy Mart Road/l-5 southbound ramps	Signal	27.4	C	40.9	D
4	Dairy Mart Road/Servando Avenue	AWSC	16.0	C	14.6	B
5	Dairy Mart Road/Camino De La Plaza	AWSC	10.2	B	17.0	C

Table 6. Existing Weekday Peak Hour Intersection LOS

			AM Peak		PM Peak	
No.	Intersection	Traffic Control	Delay ${ }^{1}$	LOS 2	Delay 1	LOS 2
6	Clearwater Way/Dairy Mart Road		8.8	A	8.7	A
7	Monument Road/Dairy Mart Road	Stop-Control	8.6	A	8.6	A
8	Hollister Street/Monument Road	Stop-Control	8.6	A	8.8	A
9	Hollister Street/Tocayo Avenue	Signal	$\mathbf{2 2 5 . 6}$	F	56.9	E

Notes: AWSC - All-way stop control
1 Delay is measured in seconds per vehicle
2 Level of Service (LOS)

As shown in the table, the following study area intersection is currently operating at LOS E or worse under existing conditions:

- Hollister Street/Tocayo Avenue (LOS F in the AM peak hour and LOS E in the PM peak hour)

INTENTIONALLY LEFT BLANK

4 Opening Year Conditions

This section presents the analysis of opening year traffic conditions that was conducted for the year 2022 when the project would be operational. The Opening Year conditions are based on the addition of traffic from approved and pending projects as well as sediment management sites in the study area, along with application of an ambient growth factor to the existing 2020 traffic volumes.

4.1 Cumulative Projects

The cumulative projects are projects that are proposed and in the review process, but not yet fully approved; or, projects that have been approved, but not fully constructed or occupied. The City of San Diego identified three cumulative projects and the County of San Diego identified one cumulative project that may add traffic to the project study area.

Additionally, the existing sediment management sites that were included in the Opening Year conditions are listed below.

- Goat Canyon Sediment Basin
- Smuggler's Gulch Emergency and Pilot Channel, City of San Diego
- Smuggler's Gulch County of San Diego
- United States International Boundary and Water Commission

Adequate data to estimate worker and truck trip generation for the Tijuana River Valley (Brown Fill) and Tijuana Estuary Tidal Restoration Project (TETRP) (Phase II) projects was not available at the time of preparation of this memorandum. However, the background growth of 1% is assumed for the study area is conservative and would account for any additional traffic that these sites would generate.

Figure 9 shows the locations, and Table 7 provides a brief description of the cumulative projects.
Table 7. Description of Cumulative Projects

No.	Cumulative Project/Application No.	Location	Description
1	Goat Canyon Sediment Basin	South of Monument Rad, west of Hollister Road	On-going- excavation, sorting and hauling of stockpiled waste
2	County of San Diego Campground and Nature Education Activity Center	1942 Monument Road	Construction of a campground and nature activity center within an existing 78-acre vacant site.
3A	Smuggler's Gulch Emergency and Pilot Channel (City of San 3B	Diego) (North of Monument Road)	Excavation in Smuggler's Gulch to prevent future flooding of Monument Road and neighboring property.
4	Smuggler's Gulch (County of San Diego)	South of Monument Road	Ongoing dredging and excavation of materials.
5	United States International Boundary and Water Commission (USIBWC)	South of Clearwater Way	On-going - Excavation, sorting, and hauling

Table 7. Description of Cumulative Projects

No.	Cumulative Project/Application No.	Location	Description
6	Vista Lane Villas EOT (Project 458862)	3481 Vista (SB) Lane	Construction of 38 units on a 2.88-acre site.
7	Mission Villas EOT (Project 458919)	3515 Vista (SB) Lane	Construction of 14 residential condominium units on a 1.52-acre site.
8	Blackshaw Lane EOT (Project 458934)	549 Blackshaw Lane	Development of 11 residential condominium units on a 0.94-acre site.
9	San Ysidro Senior Village (Project 569507)	515 W San Ysidro Boulevard	Development of 51 senior living residential units on a 1.25-acre site.
10	Residential - Saturn Blvd (Project 566657)	1695 Saturn Boulevard	Construction of 18 residential single dwelling units on a 3.6-acre site.

4.1.1 Trip Generation

The trip generation for the cumulative projects is shown in Table 8. As shown in the table, cumulative projects are forecast to generate approximately 2,752 daily trips, 277 AM peak hour trips, and 333 PM peak hour trips. Figure 10 shows the cumulative project traffic volumes.

Table 8. Cumulative Projects Trip Generation Summary

			Daily	AM P	k Hour		PM P	ak Hour	
No.	Land Use/ Description	Units	Trips	In	Out	Total	In	Out	Total
1	Goat Canyon Sediment Basin ${ }^{1}$	Workers/ Trucks	823	116	0	116	0	116	116
2	County of San Diego Campground and Nature Education Activity Center ${ }^{2}$	Acres	764	15	22	37	52	24	76
$\begin{gathered} \hline \text { 3A } \\ \& \\ \text { 3B } \end{gathered}$	Smuggler's Gulch Emergency and Pilot Channel (City of San Diego) ${ }^{1}$	Workers/ Trucks	199	38	0	38	0	38	38
4	Smuggler's Gulch (County of San Diego) ${ }^{1}$	Workers/ Trucks	33	8	0	8	0	8	8
5	United States International Boundary and Water Commission (USIBWC) ${ }^{1}$	Workers/ Trucks	45	14	0	14	0	14	14
6	Vista Lane Villas EOT (Project 458862) ${ }^{2}$	DU	304	5	19	24	21	9	30
7	$\begin{aligned} & \text { Mission Villas EOT (Project } \\ & 458919)^{2} \\ & \hline \end{aligned}$	DU	112	2	7	9	8	3	11
8	$\begin{aligned} & \text { Blackshaw Lane EOT (Project } \\ & 458934)^{2} \end{aligned}$	DU	88	1	6	7	6	3	9
9	San Ysidro Senior Village (Project 569507) ${ }^{2}$	DU	204	4	6	10	8	6	14
10	$\begin{array}{\|l} \hline \begin{array}{l} \text { Residential - Saturn Blvd (Project } \\ 566657)^{2} \end{array} \\ \hline \end{array}$	DU	180	4	10	14	13	5	18
Total Trip Generation			2,752	206	70	276	108	226	334

Notes: DU = dwelling unit

1 Trip Generation based on worker and truck trip estimate for maximum export of material for the sediment management site.
2 Trip generation based on trip rates from SANDAG 2002

4.1.2 Trip Distribution and Assignment

Trip distributions and assignments for the cumulative projects were developed assuming logical commute corridors. The trips generated by the cumulative projects were distributed and assigned through the study area network.

4.2 Traffic Volumes

Opening Year traffic volumes include traffic from ambient growth, and traffic from the addition of cumulative projects in the vicinity of the project. A growth rate of 1.0% per year, based on the SANDAG traffic forecast was applied to the existing traffic volumes to account for the Opening conditions. Figure 11 illustrates the Year 2022 (no project) traffic volumes for peak hour conditions.

4.3 Intersection Operations

An intersection LOS analysis was prepared for the Opening Year conditions using the HCM methodology. Table 7 summarizes the results of the Opening Year conditions intersection analysis for the AM and PM peak hours. Detailed LOS calculation worksheets are included in Appendix C.

Table 9. Opening Year Peak Hour Intersection LOS

No.	Intersection	Traffic Control	AM Peak		PM Peak	
			Delay ${ }^{1}$	LOS 2	Delay ${ }^{1}$	LOS ${ }^{2}$
1	I-5 northbound ramps/San Ysidro Boulevard	Signal	26.9	C	17.4	B
2	Dairy Mart Road/San Ysidro Boulevard	Signal	38.7	D	47.4	D
3	Dairy Mart Road/l-5 southbound ramps	Signal	30.8	C	47.3	D
4	Dairy Mart Road/Servando Avenue	AWSC	18.6	C	32.7	D
5	Dairy Mart Road/Camino De La Plaza	AWSC	12.6	B	23.0	C
6	Clearwater Way/Dairy Mart Road	Stop-Control	9.6	A	9.8	A
7	Monument Road/Dairy Mart Road	Stop-Control	9.1	A	9.6	A
8	Hollister Street/Monument Road	Stop-Control	9.5	A	10.2	B
9	Hollister Street/Tocayo Avenue	Signal	236.9	F	61.9	E

[^1]1 Delay is measured in seconds per vehicle
2 Level of Service (LOS)
As shown in the table, the following study area intersection would continue to operate at LOS E or worse under Opening Year conditions:

- Hollister Street/Tocayo Avenue (LOS F in the AM peak hour and LOS E in the PM peak hour)

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

5 Opening Year Plus Project Conditions

This section describes project impacts under Opening Year plus Project conditions within the study area for intersection operations and analyzes per the City of San Diego and County of San Diego guidelines.

5.1 Traffic Volumes

The project trip assignment, as shown in Figure 5, was added to the Opening Year traffic volumes, as shown in Figure 11, to derive the Opening Year plus Project traffic volumes. Figure 12 shows the Opening Year plus project traffic volumes. The existing intersection geometrics in the study area have been assumed to be maintained through the Opening Year plus Project traffic scenario, as shown in Figure 6.

5.2 Intersection Operations

An intersection LOS analysis was prepared for the Opening Year plus Project condition using the HCM methodology. Table 10 summarizes the results of the Opening Year plus Project intersection analysis for the AM and PM peak hours. Detailed LOS calculation worksheets are included in Appendix C.

As shown in the table, the following study area intersection would continue to operate at LOS E or worse under Opening Year plus Project conditions:

- Hollister Street/Tocayo Avenue (LOS F in the AM peak hour and LOS E in the PM peak hour)

As shown in the table, the addition of project traffic would contribute to the Hollister Street/Tocayo Avenue intersection that is currently operating at an unacceptable level of service. However, based on the criteria specified by the City of San Diego for signalized intersections, the proposed project would not be required to make any improvements to this intersection.

City of San Diego:

- The project does not add 50 peak hour trips to the Hollister Street/Tocayo Avenue intersection, therefore is not required to be included in the project's study area;
- The project does not add traffic to an individual left turn movement causing the total number of peak hour left turns to exceed 300.
- The project does not add traffic to an individual right turn movement causing the total number of peak hour right turns to exceed 500.

Table 10. Opening Year plus Project Peak Hour Intersection Level of Service

No	Intersection	LOS Method	Opening Year				Opening Year plus Project				Change in Delay		Unacceptable LOS	
			AM Peak		PM Peak		AM Peak		PM Peak					
			Delay ${ }^{1}$	LOS ${ }^{2}$	Delay ${ }^{1}$	LOS ${ }^{2}$	Delay ${ }^{1}$	LOS ${ }^{2}$	Delay ${ }^{1}$	LOS^{2}	AM	PM	AM	PM
1	I-5 northbound ramps/San Ysidro Boulevard	Signal	26.9	C	17.4	B	26.9	C	17.5	B	0.00	0.10	No	No
2	Dairy Mart Road/San Ysidro Boulevard	Signal	38.7	D	47.4	D	38.7	D	50.1	D	0.00	2.70	No	No
3	Dairy Mart Road/l-5 southbound ramps	Signal	30.8	C	47.3	D	31.2	C	48.1	D	0.40	0.80	No	No
4	Dairy Mart Road/Servando Avenue	AWSC	18.6	C	32.7	D	18.9	C	36.5	E	0.30	3.80	No	No
5	Dairy Mart Road/Camino De La Plaza	AWSC	12.6	B	23.0	C	13.0	B	23.5	C	0.40	0.50	No	No
6	Clearwater Way/Dairy Mart Road	Stop-Control	9.6	A	9.8	A	9.7	A	9.9	A	0.10	0.10	No	No
7	Monument Road/Dairy Mart Road	Stop-Control	9.1	A	9.6	A	9.6	A	10.8	B	0.50	1.20	No	No
8	Hollister Street/Monument Road	Stop-Control	9.5	A	10.2	B	9.7	A	10.7	B	0.20	0.50	No	No
9	Hollister Street/Tocayo Avenue	Signal	236.9	F	61.9	E	236.2	F	61.8	E	-0.70^{3}	-0.10^{3}	Yes	Yes

Notes: AWSC - All way stop control
BOLD value indicates unsatisfactory LOS
1 Volume-to-Capacity (V/C) ratio
2 Level of Service (LOS)
3 Occasionally addition of traffic to a movement reduces the overall average delay (in seconds) of the intersection

INTENTIONALLY LEFT BLANK

6 Project Access Analysis

As mentioned in Section 1, the access to the proposed project would be from Monument Road via the unsignalized intersection of Dairy Mart Road/Monument Road (Intersection 7).

The section of Monument Road west of Dairy Mart Road/Monument Road intersection has a posted speed limit of $30-\mathrm{mph}$. As shown on Figure13, there is adequate sight distance at the Dairy Mart Road/Monument Road intersection looking from theeastbound and westbound direction towards the northbound approach (i.e. the access to the proposed project). Itis recommended that any shrubs/vegetation at the northbound approach of the Dairy Mart Road/Monument Roadintersection should be maintained periodically. There is a pedestrian crossing sign placed along Monument Road250 feet west of the Dairy Mart Road/Monument Road intersection to warn vehicular traffic of potential pedestriantraffic. As illustrated in the pedestrian and bike counts collected at this intersection (Appendix A), no pedestrianswere observed at this intersection during the AM and PM peak hour; however, three bicyclists were observedcrossing the northbound approach during the AM and the PM peak hour.

All worker and truck traffic will access the site via project access driveway off Monument Road. The crosssection of Monument Road that provides access to the project varies between 26 feet to 40 feet. This section of Monument Road has an undivided travel way and no curb, gutter or sidewalk. An unpaved meandering roadway on the proposed project site would generally provide vehicular travel way to workers and trucks on the site for required sediment management related activities.

As shown in Table 11, the project access intersection would operate at an acceptable LOS.
Table 11. Project Access Peak Hour Intersection LOS

		AM Peak			PM Peak	
Intersection	Traffic Control	Delay 1	LOS 2	Delay 1	LOS 2	
Monument Road /Project Access	Stop-control 3	7.4	A	8.8	A	

Notes:

1 Delay is measured in seconds per vehicle
2 Level of Service (LOS)
3 Stop control is not proposed at the Project access point; however, the "driveway" was analyzed assuming people would stop before entering the site. This approach was taken for purposes of traffic software providing a value for LOS.

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

7 Improvement Measures

Based on the traffic analyses above, the proposed project would not be required to make any off-site improvements to the intersections in the study area.

INTENTIONALLY LEFT BLANK

Based on the transportation analysis of the proposed project, the following findings on study area intersection levels of service, proposed project trip generation, and opening year conditions are made:

- A daily average of 14 workers, 3 vendor trucks and 6 net new haul trucks would be required for most phases of the project-related activities. The proposed project would generate 46 daily trips, 17 AM peak hour trips (17 inbound and 0 outbound), and 17 trips during the PM peak hour (0 inbound and 17 outbound). With the application of PCE factors to truck trips, the project would generate 79 total PCE daily trips, and 23 PCE trips during the AM peak hour (23 inbound and 0 outbound) and 23 PCE trips during the PM peak hour (0 inbound and 23 outbound).
- Based on the small project screening criteria used by State, County and the City, since the project would generate 79 average daily trips, it can be presumed to have a less than significant VMT impact.
- Under Existing and Opening Year conditions, the Hollister Street/Tocayo Avenue intersection operates at LOS F in the AM peak hour and LOS E in the PM peak hour.
- Under Opening Year plus Project conditions, with the addition of project traffic the Hollister Street/Tocayo Avenue intersection would continue to operate at LOS F in the AM peak hour and LOS E in the PM peak hour. However, the proposed project would not add a substantial number of trips to the intersection that would warrant any improvements per the City's guidelines.
- The access to the proposed project would be from Monument Road and the project access driveway would operate at an acceptable LOS under Opening Year plus Project conditions.
- Based on the traffic analyses provided in the memorandum, the proposed project would not be required to make any off-site improvements to the intersections in the study area.

INTENTIONALLY LEFT BLANK

9 References

City of San Diego. 2020. Draft Transportation Study Manual, City of San Diego, June 10, 2020
City of San Diego.2020. Municipal Waterways and Maintenance Plan, Final EIR, 2020
County of San Diego. 2020. Draft Transportation Study Guidelines, County of San Diego, May 2020
OPR (California Governor's Office of Planning and Research). 2018. Technical Advisory on Evaluating Transportation Impacts in CEQA. December 2018. Accessed March 2020. http://opr.ca.gov/ docs/20190122-743_Technical_Advisory.pdf.

SANDAG (San Diego Association of Governments). 2002. Brief Guide of Vehicular Trip Generation Rates for the San Diego Region. April 2002.

INTENTIONALLY LEFT BLANK

APPENDIX A Traffic Counts

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

$\sum_{<}$	7:00 AM
	7:15 AM
	7:30 AM
	7:45 AM
	8:00 AM
	8:15 AM
	8:30 AM
	8:45 AM
	9:00 AM
	9:15 AM
	9:30 AM
	9:45 AM
	TOTAL
\sum_{L}	3:00 PM
	3:15 PM
	3:30 PM
	3:45 PM
	4:00 PM
	4:15 PM
	4:30 PM
	4:45 PM
	5:00 PM
	5:15 PM
	5:30 PM
	5:45 PM
	TOTAL

ALL PED AND BIKE					
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL	
0	0	0	0	0	
0	1	0	0	1	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
1	0	0	0	1	
1	0	0	0	1	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
2	1	0	0	3	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	1	0	0	1	
1	0	0	0	1	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
1	1	0	0	2	

PEDESTRIAN CROSSINGS				
N SIDE	S SIDE	E SIDE	W SIDE	TOTAL
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

BICYCLE CROSSINGS				
NS	SS	ES	WS	TOTAL
0	0	0	0	0
0	1	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	0	0	1
1	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
2	1	0	0	3
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	1	0	0	2

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

U-TURNS					
NB	SB	EB	WB	TTL	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

\square

San Ysidro
WEST SIDE
\square SOUTH SIDE

I-5 NB Ramps

San Ysidro
EAST SIDE San Ysidro

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

AimTD LLC
TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS
PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

INTERSECTION TURNING MOVEMENT COUNTS

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com

DATE: Tuesday, January 28, 2020

$\begin{gathered} \hline \text { AM } \\ \text { TIME } \\ \hline \end{gathered}$	NORTHBOUND														
	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL	T
0:00	0	3	1	0	0	0	0	0	0	0	0	0	0	4	1
0:15	0	2	1	0	0	0	0	0	0	0	0	0	0	3	12
0:30	0	3	0	0	0	0	0	0	0	0	0	0	0	3	1
0:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
1:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4	13
1:15	0	2	1	0	0	0	0	0	0	0	0	0	0	3	13
1:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	13
1:45	0	4	0	0	0	0	0	0	0	0	0	0	0	4	1
2:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2	1
2:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
2:30	0	1	2	0	0	0	0	0	0	0	0	0	0	3	14,
2:45	0	6	1	0	0	0	0	0	0	0	0	0	0	7	1
3:00	0	6	2	0	0	0	0	0	0	0	0	0	0	8	1
3:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15
3:30	0	7	1	0	0	0	0	0	0	0	0	0	0	8	15
3:45	0	7	0	0	0	0	0	0	0	0	0	0	0	7	15
4:00	0	11	2	0	0	0	0	0	0	0	0	0	0	13	1
4:15	0	18	2	0	0	0	0	0	0	0	0	0	0	20	1
4:30	0	18	2	0	0	0	0	0	0	0	0	0	0	20	1
4:45	0	18	8	0	0	0	0	0	0	0	0	0	0	26	1
5:00	0	20	11	0	0	0	0	0	0	0	0	0	0	31	1
5:15	0	25	8	0	0	0	0	0	0	0	0	0	0	33	1
5:30	0	34	11	0	1	0	0	0	1	0	0	0	0	47	1
5:45	1	28	11	0	1	0	0	0	0	0	0	0	0	41	1
6:00	0	33	16	0	2	0	0	0	0	0	0	0	0	51	1
6:15	0	29	5	0	0	1	0	0	1	0	0	0	0	36	1
6:30	1	45	14	0	1	0	0	0	0	0	0	0	0	61	1
6:45	0	51	15	0	2	0	0	0	0	0	0	0	0	68	1
7:00	0	66	12	1	2	0	0	0	0	0	0	0	0	81	1
7:15	0	71	14	1	2	1	0	0	0	0	0	0	0	89	1
7:30	0	75	10	1	0	0	0	0	0	0	0	0	0	86	1
7:45	0	66	7	2	1	0	0	0	0	0	0	0	0	76	1
8:00	0	63	13	0	0	1	0	0	1	0	0	0	0	78	2
8:15	0	52	12	0	0	0	0	0	0	0	0	0	0	64	2
8:30	0	41	10	0	0	0	0	0	0	0	0	0	0	51	2
8:45	1	39	8	0	0	0	0	0	0	0	0	0	0	48	2
9:00	0	45	9	0	3	0	0	0	0	0	0	0	0	57	2
9:15	0	26	7	0	7	0	0	0	0	0	0	0	0	40	2
9:30	0	33	14	0	1	0	0	0	0	0	0	0	0	48	2
9:45	0	28	7	0	1	0	0	0	1	0	0	0	0	37	2
10:00	0	33	7	0	2	0	0	0	1	0	0	0	0	43	
10:15	0	48	10	0	2	1	0	0	0	0	0	0	0	61	2
10:30	0	39	5	0	0	0	0	0	0	0	0	0	0	44	2
10:45	0	46	7	0	1	1	0	0	0	0	0	0	0	55	2
11:00	0	44	10	0	2	0	0	0	0	0	0	0	0	56	2
11:15	0	58	8	0	2	1	0	0	0	0	0	0	0	69	
11:30	0	48	8	0	2	0	0	0	0	0	0	0	0	58	2
11:45	1	54	9	1	4	0	0	0	0	0	0	0	0	69	2
TOTAL	4	1,356	301	6	39	6	0	0	5	0	0	0	0	1,717	T

AM PEAK HOUR
AM PEAK VOLUME

LOCATION\# San Diego
LOCATION\# San Diego
CLASS1 Dairy Mart between I-5 and Camino De La Plaza

$\begin{array}{\|c\|} \hline \text { PM } \\ \text { Time } \\ \hline \end{array}$	NORTHBOUND													
	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
12:00	0	67	5	0	1	0	0	0	0	0	0	0	0	73
12:15	0	80	9	1	2	0	0	0	0	0	0	0	0	92
12:30	0	65	7	0	4	1	0	0	0	0	0	0	0	77
12:45	0	69	10	0	0	1	0	0	0	0	0	0	0	80
13:00	1	75	14	0	4	0	0	0	0	0	0	0	0	94
13:15	1	67	10	0	3	0	0	0	0	0	0	0	0	81
13:30	1	80	14	0	3	1	0	1	0	0	0	0	0	100
13:45	0	70	14	0	4	0	0	0	0	0	0	0	0	88
14:00	1	77	8	0	0	0	0	0	1	0	0	0	0	87
14:15	0	91	10	1	3	0	0	0	0	0	0	0	0	105
14:30	0	96	13	1	0	1	0	0	0	0	0	0	0	111
14:45	0	83	9	1	1	0	0	0	0	0	0	0	0	94
15:00	0	87	10	0	7	0	0	0	0	0	0	0	0	104
15:15	0	80	13	0	0	1	0	0	0	0	0	0	0	94
15:30	0	69	10	1	0	0	0	0	0	0	0	0	0	80
15:45	0	71	13	2	1	0	0	0	0	0	0	0	0	87
16:00	1	79	13	1	0	0	0	0	1	0	0	0	0	95
16:15	0	75	12	0	0	0	0	0	0	0	0	0	0	87
16:30	0	70	11	0	2	0	0	0	0	0	0	0	0	83
16:45	0	78	10	0	2	0	0	0	0	0	0	0	0	90
17:00	0	81	17	0	0	0	0	0	0	0	0	0	0	98
17:15	0	77	19	0	2	0	0	0	0	0	0	0	0	98
17:30	0	87	18	0	0	0	0	0	0	0	0	0	0	105
17:45	0	90	14	0	1	0	0	0	0	0	0	0	0	105
18:00	0	77	10	0	0	0	0	0	0	0	0	0	0	87
18:15	0	53	6	0	0	0	0	0	0	0	0	0	0	59
18:30	0	75	10	0	0	0	0	0	0	0	0	0	0	85
18:45	0	55	16	0	0	0	0	0	0	0	0	0	0	71
19:00	0	50	9	0	0	0	0	0	0	0	0	0	0	59
19:15	0	59	11	0	0	0	0	0	0	0	0	0	0	70
19:30	0	51	3	0	0	0	0	0	0	0	0	0	0	54
19:45	0	45	5	0	0	0	0	0	0	0	0	0	0	50
20:00	0	72	12	0	1	0	0	0	0	0	0	0	0	85
20:15	0	34	3	0	0	0	0	0	0	0	0	0	0	37
20:30	0	39	1	0	0	0	0	0	0	0	0	0	0	40
20:45	0	27	2	0	0	0	0	0	0	0	0	0	0	29
21:00	0	29	5	0	0	0	0	0	0	0	0	0	0	34
21:15	0	44	2	0	0	0	0	0	0	0	0	0	0	46
21:30	0	28	0	0	0	0	0	0	0	0	0	0	0	28
21:45	0	37	7	0	0	0	0	0	0	0	0	0	0	44
22:00	0	28	3	0	0	0	0	0	0	0	0	0	0	31
22:15	0	11	2	0	0	0	0	0	0	0	0	0	0	13
22:30	0	13	2	0	0	0	0	0	0	0	0	0	0	15
22:45	0	8	2	0	0	0	0	0	0	0	0	0	0	10
23:00	0	9	2	0	0	0	0	0	0	0	0	0	0	11
23:15	0	6	0	0	0	0	0	0	0	0	0	0	0	6
23:30	0	8	1	0	0	0	0	0	0	0	0	0	0	9
23:45	0	3	0	0	0	1	0	0	0	0	0	0	0	4
TOTAL	5	2,725	397	8	41	6	0	1	2	0	0	0	0	3,185
										$\begin{array}{\|l\|} \hline \mathbf{P M} \mathbf{P} \\ \mathbf{P M ~ P} \end{array}$	$\begin{aligned} & \overline{\text { AK HC }} \\ & \text { AK VO } \end{aligned}$	$\begin{aligned} & \overline{\text { UR }} \\ & \text { LUME } \end{aligned}$		$\begin{gathered} \hline 2: 15 \mathrm{PM} \\ 414 \end{gathered}$

CLASS 1	Class 1 - Motorcycles	CLASS 8	3 to 4 Axles, Single Trailer
CLASS 2	Passenger Cars	CLASS 9	5 Axles, Single Trailer
CLASS 3	2 Axles, 4-Tire Single Units	CLASS 10	6 or More Axles, Single Trailer
CLASS 4	Buses,	CLASS 11	5 or Less Axles, Multi-Trailers
CLASS 5	2 Axles, 6-Tire Single Units	CLASS 12	6 Axles, Multi-Trailers
CLASS 6	3 Axles, Single Unit	CLASS 13	7 or More Axles, Multi-Trailers
CLASS 7	4 or More Axles, Single Unit		

TOTAL: AM+PM	9	4,081	698	14	80	12	0	1	7	0	0	0	0	4,902
\% OF TOTAL	0.2%	83.3%	14.2%	0.3%	1.6%	0.2%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	100.0%
Class	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	

PREPARED BY: AimTD LLC. tel: 7142537888 cs@aimtd.com
DATE: Tuesday, January 28, 2020

```
LOCATION\# San Diego
```

$\begin{gathered} \hline \text { AM } \\ \text { TIME } \end{gathered}$	NORTHBOUND														PM	NORTHBOUND													TOTAL
	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL	Time	1	2	3	4	5	6	7	8	9	10	11	12	13	
0:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:00	0	5	0	0	1	0	0	0	0	0	0	0	0	6
0:15	0	0	0	0	0	0	0	0	,	0	0	0	0	0	12:15	0	9	2	0	0	0	0	0	0	0	0	0	0	11
0:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0	6	3	0	2	1	0	0	0	0	0	0	0	12
0:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:45	0	6	1	0	0	0	0	0	0	0	0	0	0	7
1:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	13:00	0	8	8	0	1	0	0	0	0	0	0	0	0	17
1:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:15	1	4	5	0	1	0	0	0	0	0	0	0	0	11
1:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:30	0	7	2	0	1	1	0	0	0	0	0	0	0	11
1:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:45	0	4	4	0	2	0	0	0	0	0	0	0	0	10
2:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:00	0	8	2	0	0	1	0	0	0	0	0	0	0	11
2:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:15	0	12	3	0	1	0	0	0	0	0	0	0	0	16
2:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1	14:30	0	8	4	0	0	1	0	0	0	0	0	0	0	13
2:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:45	0	4	1	0	1	0	0	0	0	0	0	0	0	6
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:00	0	7	1	0	1	0	0	0	0	0	0	0	0	9
3:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:15	0	5	5	0	0	1	0	0	0	0	0	0	0	11
3:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:30	0	6	2	0	0	0	0	0	0	0	0	0	0	8
3:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:45	0	5	3	0	1	0	0	0	0	0	0	0	0	9
4:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:00	1	13	5	0	0	0	0	0	0	0	0	0	0	19
4:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:15	0	6	6	0	0	0	0	0	0	0	0	0	0	12
4:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:30	0	6	2	0	1	0	0	0	0	0	0	0	0	9
4:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:45	0	12	6	0	0	0	0	0	0	0	0	0	0	18
5:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	17:00	1	9	7	0	0	0	0	0	0	0	0	0	0	17
5:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17:15	0	8	5	0	0	0	0	0	0	0	0	0	0	13
5:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1	17:30	0	4	5	0	0	0	0	0	0	0	0	0	0	9
5:45	0	1	2	0	1	0	0	0	0	0	0	0	0	4	17:45	0	5	4	0	0	0	0	0	0	0	0	0	0	9
6:00	0	2	0	0	1	0	0	0	0	0	0	0	0	3	18:00	0	2	2	0	0	0	0	0	0	0	0	0	0	4
6:15	0	2	1	0	0	1	0	0	0	0	0	0	0	4	18:15	0	4	1	0	0	0	0	0	0	0	0	0	0	5
6:30	0	4	3	0	1	0	0	0	0	0	0	0	0	8	18:30	0	1	1	0	0	0	0	0	0	0	0	0	0	2
6:45	0	0	2	0	1	0	0	0	0	0	0	0	0	3	18:45	0	4	0	0	0	0	0	0	0	0	0	0	0	4
7:00	0	4	1	0	0	0	0	0	0	0	0	0	0	5	19:00	0	3	1	0	0	0	0	0	0	0	0	0	0	4
7:15	0	1	3	0	2	1	0	0	0	0	0	0	0	7	19:15	0	2	0	0	0	0	0	0	0	0	0	0	0	2
7:30	0	2	5	0	1	0	0	0	0	0	0	0	0	8	19:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:45	0	2	0	0	1	0	0	0	0	0	0	0	0	3	19:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:00	0	1	1	0	0	1	0	0	1	0	0	0	0	4	20:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
8:15	0	5	0	0	0	0	0	0	0	0	0	0	0	5	20:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:30	0	3	4	0	0	0	0	0	0	0	0	0	0	7	20:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:45	0	2	3	0	0	0	0	0	0	0	0	0	0	5	20:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9:00	0	8	3	0	3	0	0	0	0	0	0	0	0	14	21:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
9:15	0	3	3	0	3	0	0	0	0	0	0	0	0	9	21:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30	0	5	3	0	2	0	0	0	0	0	0	0	0	10	21:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:45	0	2	4	0	1	0	0	0	0	0	0	0	0	7	21:45	0	2	0	0	0	0	0	0	0	0	0	0	0	2
10:00	0	1	3	0	2	0	0	0	0	0	0	0	0	6	22:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	4	1	0	1	1	0	0	0	0	0	0	0	7	22:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	6	1	0	0	0	0	0	0	0	0	0	0	7	22:30	0	4	0	0	0	0	0	0	0	0	0	0	0	4
10:45	0	7	3	0	0	1	0	0	0	0	0	0	0	11	22:45	0	0	1	0	0	0	0	0	0	0	0	0	0	1
11:00	1	4	3	0	2	0	0	0	0	0	0	0	0	10	23:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
11:15	0	5	3	0	0	1	0	0	0	0	0	0	0	9	23:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	3	2	0	1	0	0	0	0	0	0	0	0	6	23:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
11:45	0	10	1	0	3	0	0	0	0	0	0	0	0	14	23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1	90	57	0	26	6	0	0	1	0	0	0	0	181	TOTAL	3	199	94	0	13	5	0	0	0	0	0	0	0	314
									AM PEAK HOUR $9: 00 \mathrm{AM}$ AM PEAK VOLUME 40						PM PEAK HOUR $4: 00$ PM PM PEAK VOLUME 58														

CLASS 1	Class 1 - Motorcycles	CLASS 8	3 to 4 Axles, Single Trailer
CLASS 2	Passenger Cars	CLASS	5 Axles, Single Trailer
CLASS 3	2 Axles, 4-Tire Single Units	CLASS 10	6 or More Axles, Single Trailer
CLASS 4	Buses	CLASS 11	5 or Less Axles, Multi-Trailers
CCASS 5	2 Axles, 6-Tire Single Units	CLASS 12	6 Axles, Multi-Trailers
CLASS 6	3 Axles, Single Unit	CLASS 13	7 or More Axles, Multi-Trailers
CLASS 7	4 or More Axles, Single Unit		

TOTAL: AM+PM	4	289	151	0	39	11	0	0	1	0	0	0	0	495
\% OF TOTAL	0.8%	58.4%	30.5%	0.0%	7.9%	2.2%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	100.0%
Class	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$

DATE: Tuesday, January 28, 2020 LOCATION\# San Diego

$\begin{array}{\|c\|} \hline \text { AM } \\ \text { TIME } \\ \hline \end{array}$	EASTBOUND														$\begin{gathered} \hline \text { PM } \\ \text { Time } \\ \hline \end{gathered}$	EASTBOUND													
	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
0:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
0:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:15	0	7	1	0	0	0	0	0	0	0	0	0	0	8
0:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0	7	1	0	0	1	0	0	0	0	0	0	0	9
0:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:45	0	4	1	0	0	0	0	0	0	0	0	0	0	5
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:00	0	7	5	0	0	1	0	0	0	0	0	0	0	13
1:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:15	0	2	3	0	0	0	0	0	0	0	0	0	0	5
1:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:30	1	3	2	0	0	1	0	0	0	0	0	0	0	7
1:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:45	0	3	3	0		0	0	0	0	0	0	0	0	7
2:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:00	0	5	1	0	0	0	0	0	0	0	0	0	0	6
2:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:15	0	12	2	0	1	0	0	0	0	0	0	0	0	15
2:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:30	0	3	3	0	0	0	0	0	0	0	0	0	0	6
2:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:45	0	3	2	0	0	0	0	0	0	0	0	0	0	5
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4
3:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:15	0	4	1	0	0	1	0	0	0	0	0	0	0	6
3:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2
3:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3
4:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	16:00	0	5	1	0	0	0	0	0	0	0	0	0	0	6
4:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:15	0	4	5	0	0	0	0	0	0	0	0	0	0	9
4:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:30	0	2	3	0	1	0	0	0	0	0	0	0	0	6
4:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:45	0	12	3	0	0	0	0	0	0	0	0	0	0	15
5:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17:00	0	9	3	0	0	0	0	0	0	0	0	0	0	12
5:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17:15	0	9	4	0	0	0	0	0	0	0	0	0	0	13
5:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2	17:30	0	2	0	0	1	0	0	0	0	0	0	0	0	3
5:45	0	3	0	0	0	0	0	0	0	0	0	0	0	3	17:45	1	2	,	0	0	0	0	0	0	0	0	0	0	4
6:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	18:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2
6:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	18:15	0	2	0	0	0	0	0	0	0	0	0	0	0	2
6:30	0	2	2	0	1	1	0	0	0	0	0	0	0	6	18:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2
6:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3
7:00	0	5	1	0	0	0	0	0	0	0	0	0	0	6	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	2	1	0	1	0	0	0	0	0	0	0	0	4	19:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:30	0	3	2	0	0	1	0	0	0	0	0	0	0	6	19:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2	19:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2
8:00	0	1	0	0	0	1	0	0	0	0	0	0	0	2	20:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
8:15	0	3	0	0	0	0	0	0	0	0	0	0	0	3	20:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:30	0	3	2	0	0	0	0	0	0	0	0	0	0	5	20:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1
8:45	0	3	3	0	0	0	0	0	0	0	0	0	0	6	20:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9:00	0	4	0	0	0	1	0	0	0	0	0	0	0	5	21:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
9:15	0	2	5	0	1	0	0	0	0	0	0	0	0	8	21:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30	0	3	2	0	0	0	0	0	0	0	0	0	0	5	21:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9:45	0	1	2	0	0	0	0	0	0	0	0	0	0	3	21:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	4	0	1	0	0	0	0	0	0	0	0	5	22:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	6	2	0	0	1	0	0	0	0	0	0	0	9	22:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	3	3	0	0	0	0	0	0	0	0	0	0	6	22:30	0	2	1	0	0	0	0	0	0	0	0	0	0	3
10:45	0	5	1	0	0	1	0	0	0	0	0	0	0	7	22:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	3	3	0	0	0	0	0	0	0	0	0	0	6	23:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
11:15	0	3	1	0	0	0	0	0	0	0	0	0	0	4	23:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	3	0	0	0	0	0	0	0	0	0	0	0	3	23:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
11:45	0	7	1	0	2	0	0	0	0	0	0	0	0	10	23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	75	36	0	6	6	0	0	0	0	0	0	0	123	TOTAL	2	134	53	0	4	4	0	0	0	0	0	0	0	197
										$\begin{aligned} & \text { AM PE } \\ & \text { AM PE } \end{aligned}$	AK HO	$\begin{aligned} & \overline{\text { UR }} \\ & \text { UME } \end{aligned}$		$\begin{gathered} \hline 10: 15 \mathrm{AM} \\ 28 \\ \hline \end{gathered}$											$\begin{aligned} & \text { PM PE } \\ & \text { PM PE } \end{aligned}$	AK HO AK VO	$\begin{aligned} & \text { UR } \\ & \text { LUME } \end{aligned}$		$\begin{gathered} \hline 4: 30 \mathrm{PM} \\ 46 \end{gathered}$
CLASS 1		Class 1 -	torcy			CLAS		3 to 4	xles,	Single	railer			TOTAL: A	M+PM	2	209	89	0	10	10	0	0	0	0	0	0	0	320
CLASS 2		Passenge				CLAS		5 Axle	Sing	le Trail				\% OF TO	TAL	0.6\%	65.3\%	27.8\%	0.0\%	3.1\%	3.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%
CLASS 3		2 Axles,	e Sing	Units		CLAS		6 or M	re Ax	xles, Sin	Tra																		
CLASS 4 CLASS 5		Buses 2 Axles,		Units		$\begin{aligned} & \text { CLAS } \\ & \text { CLAS } \end{aligned}$		$\begin{aligned} & 5 \text { or Le } \\ & 6 \text { Axle } \end{aligned}$	$\begin{aligned} & \text { ss Axl } \\ & \text { Mult } \end{aligned}$	es, Mult i-Traile	Traile			Class		1	2	3	4	5	6	7	8	9	10	11	12	13	
CLASS 6		3 Axles,	le Uni			CLAS		7 or M	a Ax	les, Mu	-Trail			TOTAL: A		5	460	188	0	29	20	0	0	0	0	0	0	0	702
CLASS 7		4 or More	les, Si	gle Unit										\% OF TO		1.6\%	143.8\%	58.8\%	0.0\%	9.1\%	6.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%

DATE: Tuesday, January 28, 2020 LOCATION\# San Diego

$\begin{array}{\|c\|} \hline \text { AM } \\ \hline \text { TIME } \\ \hline \end{array}$	EASTBOUND														$\begin{array}{\|c\|} \hline \text { PM } \\ \text { Time } \\ \hline \end{array}$	EASTBOUND													
	1	2	3	4	5	6	7	8	9	10	1	12	13	TOTAL		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
0:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
0:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:15	0	4	0	0	0	0	0	0	0	0	0	0	0	4
0:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0	3	1	0	0	1	0	0	0	0	0	0	0	5
0:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:45	1	5	3	0	1	0	0	0	0	0	0	0	0	10
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:00	0	3	2	0	0	0	0	0	0	0	0	0	0	5
1:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:15	0	0	3	0	0	0	0	0	0	0	0	0	0	3
1:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:30	1	1	5	0	0	0	0	0	0	0	0	0	0	7
1:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:45	0	2	2	0	0	0	0	0	0	0	0	0	0	4
2:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:00	0	6	2	0	0	0	0	0	0	0	0	0	0	8
2:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:15	0	9	1	0	0	0	0	0	0	0	0	0	0	10
2:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:30	0	7	1	0	0	0	0	0	0	0	0	0	0	8
2:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:45	0	6	2	0	0	0	0	0	0	0	0	0	0	8
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4
3:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:15	0	3	1	0	0	1	0	0	0	0	0	0	0	5
3:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2	15:30	0	1	3	0	0	0	0	0	0	0	0	0	0	4
3:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:45	0	2	3	0	0	0	0	0	0	0	0	0	0	5
4:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
4:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:15	0	3	2	0	0	0	0	0	0	0	0	0	0	5
4:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:30	0	1	2	0	0	0	0	0	0	0	0	0	0	3
4:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3
5:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17:00	0	8	3	0	0	0	0	0	0	0	0	0	0	11
5:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	17:15	0	4	2	0	0	0	0	0	0	0	0	0	0	6
5:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1	17:30	0	2	2	0	0	0	0	0	0	0	0	0	0	4
5:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2
6:00	0	0	1	0	0	0	0	0	0	0	0	0	0	1	18:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
6:15	0	1	1	0	0	0	0	0	0	0	0	0	0	2	18:15	0	1	1	0	0	0	0	0	0	0	0	0	0	2
6:30	0	3	1	0	0	0	0	0	0	0	0	0	0	4	18:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1
6:45	0	2	0	0	0	0	0	0	0	0	0	0	0	2	18:45	0	4	0	0	0	0	0	0	0	0	0	0	0	4
7:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	1	0	0	0	0	0	0	0	0	1	19:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1	19:30	0	0	2	0	0	0	0	0	0	0	0	0	0	2
7:45	0	1	0	0	1	0	0	0	0	0	0	0	0	2	19:45	0	4	0	0	0	0	0	0	0	0	0	0	0	4
8:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3	20:00	0	2	1	0	0	0	0	0	0	0	0	0	0	3
8:15	0	2	0	0	0	0	0	0	0	0	0	0	0	2	20:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	1	0	0	0	0	0	0	0	0	0	0	1	20:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:45	0	1	0	0	1	1	0	0	0	0	0	0	0	3	20:45	0	1	2	0	0	0	0	0	0	0	0	0	0	3
9:00	0	2	1	0	0	1	0	0	0	0	0	0	0	4	21:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:15	0	2	2	0	0	0	0	0	0	0	0	0	0	4	21:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:30	0	1	1	0	0	0	0	0	0	0	0	0	0	2	21:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2	21:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	1	4	0	0	0	0	0	0	0	0	0	0	5	22:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2
10:15	0	5	2	0	0	1	0	0	0	0	0	0	0	8	22:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
10:30	0	1	1	0	0	0	0	0	0	0	0	0	0	2	22:30	1	0	0	0	0	0	0	0	0	0	0	0	0	1
10:45	0	3	2	0	0	1	0	0	0	0	0	0	0	6	22:45	0	2	0	0	0	0	0	0	0	0	0	0	0	2
11:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2	23:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	4	0	0	0	0	0	0	0	0	0	0	0	4	23:15	0	0	1	0	0	0	0	0	0	0	0	0	0	1
11:30	0	2	1	0	0	0	0	0	0	0	0	0	0	3	23:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2
11:45	0	3	2	0	0	0	0	0	0	0	0	0	0	5	23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	46	24	0	3	4	0	0	0	0	0	0	0	77	TOTAL	3	106	55	0	1	2	0	0	0	0	0	0	0	167
										$\overline{A M P E P E E}$	$\begin{aligned} & \mathbf{K H O} \\ & \mathrm{K} \mathbf{0} \end{aligned}$			$\begin{gathered} 10: 00 \mathrm{AM} \\ 21 \end{gathered}$											$\begin{array}{\|l\|} \hline \mathbf{P M ~ P I} \\ \text { PM PI } \end{array}$	$\begin{aligned} & \overline{A K ~ H C} \\ & A K V O \end{aligned}$	$\begin{aligned} & \text { UR } \\ & \text { LUME } \end{aligned}$		$\begin{array}{r} \hline 2: 00 \mathrm{PM} \\ \hline \end{array}$
CLASS 1		Class 1 -	torcy			CLAS		3 to 4	xles,	ingle				TOTAL: A	M+PM	3	152	79	0	4	6	0	0	0	0	0	0	0	244
CLASS 2		Passenge				CLAS		5 Axle	Sing	Trail				\% OF TO	TAL	1.2\%	62.3\%	32.4\%	0.0\%	1.6\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%
CLASS 3		2 Axles, 4	e Sin	Units		CLAS		6 or M	Ax	s, Sin	Tra																		
$\begin{aligned} & \text { CLASS } 4 \\ & \text { CLASS } 5 \end{aligned}$		Buses 2 Axles,	e Sin	Units		$\begin{aligned} & \text { CLAS } \\ & \text { CLAS } \end{aligned}$		$\begin{aligned} & 5 \text { or Le } \\ & 6 \text { Axle } \end{aligned}$		S, Mult	raile			Class		1	2	3	4	5	6	7	8	9	10	11	12	13	
CLASS 6		3 Axles,	le Un			CLAS		7 or M	Ax	s, Mu	rail			TOTAL: A		6	338	160	0	13	12	0	0	0	0	0	0	0	529
CLASS 7		4 or More	les,	e Unit										\% OF TO	TAL	2.5\%	138.5\%	65.6\%	0.0\%	5.3\%	4.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%

DATE: Tuesday, January 28, 2020

AM	NORTHBOUND														$\begin{array}{\|c\|} \hline \text { PM } \\ \text { Time } \\ \hline \end{array}$	NORTHBOUND													
TIME	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
0:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	12:00	0	22	6	0	0	1	0	0	0	0	0	0	0	29
0:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:15	0	19	1	0	2	0	0	0	0	0	0	0	0	22
0:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0	18	4	0	1	0	0	0	0	0	0	0	0	23
0:45	0	1	1	0	0	0	0	0		0	0	0	0	2	12:45	0	13	2	0	1	1	0	0	0	0	0	0	0	17
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:00	0	14	5	0	0	0	0	0	0	0	0	0	0	19
1:15	0	1	1	0	0	0	0	0	0	0	0	0	0	2	13:15	0	20	7	2	0	1	0	0	0	0	0	0	0	30
1:30	0	2	0	0	0	0	0	0	0	0	0	0	0	2	13:30	0	20	3	0	1	0	0	0	0	0	0	0	0	24
1:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:45	0	20	4	0	1	1	0	0	0	0	0	0	0	26
2:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:00	0	20	14	0	1	0	0	0	0	0	0	0	0	35
2:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	14:15	0	33	13	2	0	0	0	0	0	0	0	0	0	48
2:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:30	1	24	10	0	0	1	0	0	0	0	0	0	0	36
2:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2	14:45	1	28	9	0	0	0	0	0	0	0	0	0	0	38
3:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:00	0	21	15	0	0	0	0	0	0	0	0	0	0	36
3:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:15	0	31	7	0	1	0	0	0	0	0	0	0	0	39
3:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:30	0	26	4	0	0	1	0	0	0	0	0	0	0	31
3:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1	15:45	1	16	18	0	0	0	0	0	0	0	0	0	0	35
4:00	0	3	2	0	1	0	0	0	0	0	0	0	0	6	16:00	0	20	16	0	1	0	0	0	0	0	0	0	0	37
4:15	0	6	0	0	0	0	0	0	0	0	0	0	0	6	16:15	2	15	7	0	0	0	0	0	0	0	0	0	0	24
4:30	0	3	1	0	0	0	0	0	0	0	0	0	0	4	16:30	0	24	13	0	0	0	0	0	0	0	0	0	0	37
4:45	0	6	0	0	0	0	0	0	0	0	0	0	0	6	16:45	0	20	17	0	2	0	0	0	0	0	0	0	0	39
5:00	1	7	2	0	1	0	0	0	0	0	0	0	0	11	17:00	0	17	5	1	0	0	0	0	0	0	0	0	0	23
5:15	0	10	8	0	1	0	0	0	0	0	0	0	0	19	17:15	1	26	12	0	0	0	0	0	0	0	0	0	0	39
5:30	0	9	4	0	0	0	0	0	0	0	0	0	0	13	17:30	0	17	12	0	0	0	0	0	0	0	0	0	0	29
5:45	0	8	5	0	1	1	0	0	3	0	0	0	0	18	17:45	0	26	12	0	0	0	0	0	0	0	0	0	0	38
6:00	0	10	5	0	1	1	0	0	0	0	0	0	0	17	18:00	0	26	12	0	2	0	0	0	0	0	0	0	0	40
6:15	0	9	4	0	0	2	0	0	2	0	0	0	0	17	18:15	0	22	11	0	0	2	0	0	0	0	0	0	0	35
6:30	1	24	9	0	0	1	0	0	0	0	0	0	0	35	18:30	2	11	4	0	0	0	0	0	0	0	0	0	0	17
6:45	2	36	8	1	4	1	0	0	0	0	0	0	0	52	18:45	0	19	6	0	0	0	0	0	0	0	0	0	0	25
7:00	1	46	5	1	6	1	0	0	0	0	0	0	0	60	19:00	0	14	2	0	0	0	0	0	0	0	0	0	0	16
7:15	0	24	7	0	4	1	0	0	0	0	0	0	0	36	19:15	0	11	4	0	0	0	0	0	0	0	0	0	0	15
7:30	1	17	9	0	0	0	0	0	0	0	0	0	0	27	19:30	0	8	4	0	0	0	0	0	0	0	0	0	0	12
7:45	2	34	7	0	0	1	0	0	0	0	0	0	0	44	19:45	0	8	4	0	0	0	0	0	0	0	0	0	0	12
8:00	0	16	9	0	0	0	0	0	0	0	0	0	0	25	20:00	0	11	3	0	1	0	0	0	0	0	0	0	0	15
8:15	0	17	5	0	0	1	0	0	0	0	0	0	0	23	20:15	0	10	4	0	0	0	0	0	0	0	0	0	0	14
8:30	0	12	5	0	1	0	0	0	0	0	0	0	0	18	20:30	0	16	3	0	0	0	0	0	0	0	0	0	0	19
8:45	0	14	3	0	0	0	0	0	0	0	0	0	0	17	20:45	0	9	1	0	0	0	0	0	0	0	0	0	0	10
9:00	0	23	5	0	0	0	0	0	1	0	0	0	0	29	21:00	0	6	3	0	0	0	0	0	0	0	0	0	0	9
9:15	0	11	4	0	1	0	0	0	0	0	0	0	0	16	21:15	0	1	4	0	0	0	0	0	0	0	0	0	0	5
9:30	0	12	4	0	1	0	0	0	0	0	0	0	0	17	21:30	0	6	2	0	0	0	0	0	0	0	0	0	0	8
9:45	0	12	3	0	1	0	0	0	0	0	0	0	0	16	21:45	0	5	0	0	0	0	0	0	0	0	0	0	0	5
10:00	0	16	6	2	1	0	0	0	0	0	0	0	0	25	22:00	2	4	1	0	0	0	0	0	0	0	0	0	0	7
10:15	0	11	4	0	0	0	0	0	0	0	0	0	0	15	22:15	0	3	1	0	0	0	0	0	0	0	0	0	0	4
10:30	0	12	2	0	1	2	0	0	0	0	0	0	0	17	22:30	4	9	2	0	1	0	0	0	0	0	0	0	0	16
10:45	0	21	5	0	0	1	0	0	0	0	0	0	0	27	22:45	0	10	1	0	0	0	0	0	0	0	0	0	0	11
11:00	0	12	7	0	0	0	0	0	0	0	0	0	0	19	23:00	0	4	1	0	0	0	0	0	0	0	0	0	0	5
11:15	1	20	7	0	1	1	0	0	0	0	0	0	0	30	23:15	0	2	1	0	0	0	0	0	0	0	0	0	0	3
11:30	0	14	4	0	1	1	0	0	0	0	0	0	0	20	23:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	1	17	3	0	1	1	0	0	0	0	0	0	0	23	23:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3
TOTAL	10	504	155	4	28	16	0	0	6	0	0	0	0	723	TOTAL	14	727	291	5	15	8	0	0	0	0	0	0	0	1,060
										AM P AM P	AK	$\begin{aligned} & \text { UR } \\ & \text { LUME } \end{aligned}$		$\begin{array}{\|} \hline 6: 30 \mathrm{AM} \\ 183 \\ \hline \end{array}$											PM P PM PE	$\overline{\mathrm{AKHC}}$	$\begin{aligned} & \text { JR } \\ & \text { UME } \end{aligned}$		$\begin{gathered} \hline 2: 15 \mathrm{PM} \\ 158 \end{gathered}$

TOTAL: AM+PM	24	1,231	446	9	43	24	0	0	6	0	0	0	0	1,783
\% OF TOTAL	1.3%	69.0%	25.0%	0.5%	2.4%	1.3%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	100.0%

Class

TOTAL: ALL	46	2,388	866	19	75	47	0	0	12	0	0	0	0	3,453
\% OF TOTAL	2.6%	133.9%	48.6%	1.1%	4.2%	2.6%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%	100.0%

DATE: Tuesday, January 28, $2020 \quad$ LOCATION\# San Diego

$\begin{array}{\|c\|} \hline \text { AM } \\ \text { TIME } \\ \hline \end{array}$	NORTHBOUND														$\begin{gathered} \hline \text { PM } \\ \text { Time } \\ \hline \end{gathered}$	NORTHBOUND													
	1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
0:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:00	0	5	1	0	0	0	0	0	0	0	0	0	0	6
0:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:15	0	6	1	0	0	0	0	0	0	0	0	0	0	7
0:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
0:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3
1:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:00	0	2	3	0	0	0	0	0	0	0	0	0	0	5
1:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:15	0	0	3	0	0	1	0	0	0	0	0	0	0	4
1:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:30	0	2	4	0	0	0	0	0	0	0	0	0	0	6
1:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13:45	0	5	2	0	0	0	0	0	0	0	0	0	0	7
2:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:00	0	5	2	0	0	0	0	0	0	0	0	0	0	7
2:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:15	0	9	2	0	0	0	0	0	0	0	0	0	0	11
2:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:30	1	10	3	0	0	0	0	0	0	0	0	0	0	14
2:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14:45	0	10	2	0	0	0	0	0	0	0	0	0	0	12
3:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:00	0	4	2	0	0	0	0	0	0	0	0	0	0	6
3:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:15	0	6	1	0	0	0	0	0	0	0	0	0	0	7
3:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:30	0	6	4	0	0	0	0	0	0	0	0	0	0	10
3:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15:45	0	2	2	0	0	0	0	0	0	0	0	0	0	4
4:00	0	0	1	0	0	0	0	0	0	0	0	0	0	1	16:00	0	2	5	0	1	0	0	0	0	0	0	0	0	8
4:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1	16:15	0	6	2	0	0	0	0	0	0	0	0	0	0	8
4:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:30	0	3	6	0	0	0	0	0	0	0	0	0	0	9
4:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16:45	0	2	3	0	0	0	0	0	0	0	0	0	0	5
5:00	0	1	1	0	0	0	0	0	0	0	0	0	0	2	17:00	0	2	4	0	0	0	0	0	0	0	0	0	0	6
5:15	0	1	1	0	0	0	0	0	0	0	0	0	0	2	17:15	1	7	1	0	0	0	0	0	0	0	0	0	0	9
5:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1	17:30	0	4	0	0	0	0	0	0	0	0	0	0	0	4
5:45	0	1	1	0	0	0	0	0	0	0	0	0	0	2	17:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
6:00	0	0	1	0	0	0	0	0	0	0	0	0	0	1	18:00	0	5	0	0	0	0	0	0	0	0	0	0	0	5
6:15	0	2	0	0	0	0	0	0	0	0	0	0	0	2	18:15	0	3	1	0	0	0	0	0	0	0	0	0	0	4
6:30	1	11	2	0	0	0	0	0	0	0	0	0	0	14	18:30	1	1	1	0	0	0	0	0	0	0	0	0	0	3
6:45	0	6	0	0	1	0	0	0	0	0	0	0	0	7	18:45	0	2	0	0	0	0	0	0	0	0	0	0	0	2
7:00	0	2	1	0	0	1	0	0	0	0	0	0	0	4	19:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3
7:15	0	1	0	0	1	1	0	0	0	0	0	0	0	3	19:15	0	3	1	0	0	0	0	0	0	0	0	0	0	4
7:30	0	0	0	0	0	1	0	0	0	0	0	0	0	1	19:30	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:45	0	0	1	0	1	0	0	0	0	0	0	0	0	2	19:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:00	0	4	0	0	0	0	0	0	0	0	0	0	0	4	20:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3
8:15	0	0	2	0	0	0	0	0	0	0	0	0	0	2	20:15	0	2	0	0	0	0	0	0	0	0	0	0	0	2
8:30	0	0	2	0	0	0	0	0	0	0	0	0	0	2	20:30	0	4	1	0	0	0	0	0	0	0	0	0	0	5
8:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3	20:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00	0	3	0	0	0	1	0	0	0	0	0	0	0	4	21:00	0	1	0	0	0	0	0	0	0	0	0	0	0	1
9:15	0	2	0	0	2	0	0	0	0	0	0	0	0	4	21:15	0	3	2	0	0	0	0	0	0	0	0	0	0	5
9:30	0	1	1	0	0	0	0	0	0	0	0	0	0	2	21:30	0	1	1	0	0	0	0	0	0	0	0	0	0	2
9:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3	21:45	0	1	0	0	0	0	0	0	0	0	0	0	0	1
10:00	0	4	2	0	0	0	0	0	0	0	0	0	0	6	22:00	2	1	1	0	0	0	0	0	0	0	0	0	0	4
10:15	0	5	1	0	0	0	0	0	0	0	0	0	0	6	22:15	0	2	1	0	0	0	0	0	0	0	0	0	0	3
10:30	0	2	2	0	0	0	0	0	0	0	0	0	0	4	22:30	4	6	2	0	0	0	0	0	0	0	0	0	0	12
10:45	0	2	1	0	0	0	0	0	0	0	0	0	0	3	22:45	0	3	0	0	0	0	0	0	0	0	0	0	0	3
11:00	1	4	2	0	0	0	0	0	0	0	0	0	0	7	23:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2
11:15	0	4	3	0	0	0	0	0	0	0	0	0	0	7	23:15	0	1	0	0	0	0	0	0	0	0	0	0	0	1
11:30	0	3	0	0	0	1	0	0	0	0	0	0	0	4	23:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	4	1	0	1	0	0	0	0	0	0	0	0	6	23:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	2	69	28	0	6	5	0	0	0	0	0	0	0	110	TOTAL	9	151	65	0	1	1	0	0	0	0	0	0	0	227
										$\begin{aligned} & \hline \mathbf{A M ~ P E} \\ & \text { AM PE } \end{aligned}$	$\begin{aligned} & \overline{B A K ~ H} \\ & =\Delta K ~ V \end{aligned}$	$\begin{aligned} & \text { UR } \\ & \text { LUME } \end{aligned}$		$\begin{array}{\|c} \hline 6: 30 \mathrm{AM} \\ 28 \\ \hline \end{array}$											PM P PM P		UME		$\begin{array}{\|c\|} \hline 2: 00 \mathrm{PM} \\ 44 \end{array}$

CLASS 1	Class 1 - Motorcycles	CLASS 8	3 to 4 4xles, Single Trailer
CLASS 2	Passenger Cars	CLASS 9	5 Axles, Single Trailer
CLASS 3	2 Axles, 4-Tire Single Units	CLASS 10	6 or More Axles, Single Trailer
CLASS 4	Buses	CLASS 11	5 or Less Axxes, Multi-Trailers
CLASS 5	2 Axles, 6-Tire Single Units	CLASS 12	6 Axles, Multi-Trailers
CLASS 6	3 Axles, Single Unit	CLASS 13	7or More Axles, Multi-Trailers
CLASS 7	4 or More Axles, Single Unit		

TOTAL: AM+PM	11	220	93	0	7	6	0	0	0	0	0	0	0	337
\% OF TOTAL	3.3%	65.3%	27.6%	0.0%	2.1%	1.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
Class	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	

	INTERVAL	PHASE TIMINC								9	$\begin{gathered} \text { PRE-EMPTION } \\ \text { E } \end{gathered}$		F									
		1	2	3	4	5	6	7	8				ELAGS	1	2	3	4	5	6	7	8	
0	WALK	1	1	1	1	1	1	1	1	CLK RST	EYSET	0	RPRUP		2		4	5	6			0
1	DONT WALK	1	1	1	1	1	1	1	1		RR1 CLR	5	RED LOCK									1
2	MIN GREEN	1	5	1	5	5	5	1	1		EVA DLY	0	YEL LOCK									2
3	TYPE 3 DET	0	0	0	0	0	0	0	0		EVA CLR	5	V RECALL		2				6			3
4	ADD/VEH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		EVB DLY	0	P RECALL									4
5	PASSAGE	0.9	6.2	0.9	2.0	2.0	6.2	9.0	0.9		EVB CLR	5	PETPRHASES									5
6	MAX GAP	0.9	8.2	0.9	2.0	2.0	8.2	9.0	0.9		EVC DLY	0	RT OLA									6
7	MIN GAP	0.9	3.0	0.9	2.0	2.0	3.0	9.0	0.9		EVC CLR	5	RT OLB									7
8	MAX EXT	9	35	9	25	25	35	9	9		EVD DLY	0	DBL ENTRY									8
9	MAX 2									YR	EVD CLR	5	MAX 2 PH									9
A	MAX 3									MO	MAX EV	255	LAG PHI SES				4	©	Tr			A
B										DAY	RR2 CLR	5	RED RES									B
C	REDUCE BY	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	DOW			R ${ }^{\text {ST TV WALK }}$									C
D	EVERY	1.0	0.5	1.0	1.0	1.0	0.5	1.0	1.0	HR			A A 3 PIIASES									D
E	YELLOW	3.0	4.1	3.0	4.1	3.7	4.1	3.0	3.0	MIN			YEL START UP		2				6			E
F	RED	0.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	SEC			H RST PHASE				4					F
	PED XING FT													1	2	3	4	5	6	7	8	
	NOTES :	$\mathrm{MPH}=35$																				

FOC LONG FAILURE	
FOD SHORT FAILURE	
FOE	0
FOF	5
FCO	3
FC1	3
FC2	10
FCA	3.0
FCB	0.0
FCC	2.0
FCD	0.0

FDO	TB SELECT	$\mathbf{1}$
FD3 PED SELECT	0	
FD4 7 WIRE	0	
FD5 PERMISSIVE	0	
FD8 OS SEEKING	1	

CO5	FLASH TYPE	1
CC2 DOWNLOAD	1	

世

C PAGE

		CONTROL PLANS									Y-COORD			LAG PHASE	FLAGS									
		1	2	3	4	5	6	7	8	9		C	D	E	F	1	2	3	4	5	6	7	8	
0	CYCLE LENGTH														LAG FZ FREE		2		4		6		8	0
1	EZ1 GRN FCTR													GAPOUT CP1	LAG FZ CP 1									1
2														GAPOUT CP2	LAG EZ CP 2									2
3	FZ3 GRN FCTR													GAPOUT CP3	LAG EZ CP 3									3
4	FZ4 GRN FCTR										PERM TIME			GAPOUT CP4	LAG FZ CP 4									4
5	FZ5 GRN FCTR										LAG OFFSET			GAPOUT	LAG FZ CP 5									5
6											FORCE OFF			GAPOUT ${ }^{\text {a }} 6$	LAG FZ CP 6									6
7	FZ7 GRN FCTR										LONG GRN			GAP UT PP7	LAG EZ CP 7									7
8	FZ8 GRN FCTR										NO GREEN			GA, QU1 CP8	LAG EZ CP 8									8
9	MULTI CYCLE													DOUT CP9	LAG FZ CP 9									9
A	OFFSET A										OFESET				LAG C COORD									A
B	OFFSET B														LAG D COORD									B
C	OFESET C														COORD FAZES		2				6			C
D	EZ 3 EXT																							D
E	EZ 7 EXT																							E
F	OFFSET INTRPT																							F
																1	2	3	4	5	6	7	8	

$C C B / C D B$ OFFSET TIMER
$C C C / C D C$ LAG GREEN TIMER
$C C D / C D D$ FORCE OFF TIMER
CCE/CDE LONG GREEN TIMER
$C C F / C D F$ NO GREEN TIMER

	D	FLAGS								E	FLAGS								F	FLAGS									E	FLAGS								F	FLAGS								
	MAX	1	2	3	4	5	6	7	8	MIN	1	2	3	4	5	6	7	8	PED	1	2	3	4	5	6	7	8		FUNCTION	1	2	3	4	5	6	7	8	FUNCTION	1	2	3	4	5	6	7	8	
0	RCL									RCL									RCL									0										CODE 4									0
1	CP 1									CP 1									CP 1									1										CODE 5									1
2	CP 2									CP 2									CP 2									2										C-RECALL									2
3	CP 3									CP 3									CP 3									3										D-RECALL									3
4	CP 4									CP 4									CP 4									4										dxequsum									4
5	CP 5									CP 5									CP 5									5										2 pep		2							5
6	CP 6									CP 6									CP 6									6										G pee						6			6
7	CP 7									CP 7									CP 7									7										4 HES				4					7
8	CP 8									CP 8									CP 8									8										¢ exa								$8:$	8
9	CP 9									CP 9									CP 9																												9
A																			RCL 1										OLA Λ -									Qua en									A
B																			RCL 2										QUQ									OLS ON									B
C																												C	OLe Nop									OLOTO									C
D																												D	○एण Not									QRTSovt									D
E																												E																			E
F																												F																			F
		1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8		1	2	3	4							1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8	

TIME OF DAY ACTIVITY TABLE											
7+EVENT+HR+MIN+ACT+"E"+ON/OFF+DOW LTS											
				ON /	S	M	T	W	T	F	S
	HR	MIN	АСТ	OFF	1	2	3	4	5	6	7
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
A											
B											
C											
D											
E											
F											

1 TYPE OF MAX TERMINATION
2 MAX 2
3 MAX 3
4 COND SERV (1ST SELECT)
5 COND SERV (2ND SELECT)
6 ENERGIZE AUX OUTPUT-RED

7 ENERGIZE AUX OUTPUT-GREEN

CON'IROL PLAN TIME OF DAY											
9+EVENT+HR+MIN+CP+OS+E+DOW											
	HR	MIN	CP	OS	S	M	T 3	W	T T	F	S
0											
1											
2											
3											
4											
5											
6											
7									-	-	
8										\bigcirc	
9											
A											
B						-	\checkmark				
C						\bigcirc					
D						\checkmark					
E											
F											

CONTROL PLAN TIME OF DAY											
+EVENT+HR+MIN+CP+OS+E+DOW											
	HR	MIN	CP	OS	1	2	3	4	5	6	7
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
A											
B											
C											
D											
E											
F											

	INTERVAL	1	2	PIIASE TIMING						9	PRE-EMPTIONE		F									
				3	4	5	6	7	8				FLAGS	1	2	3	4	5	6	7	8	
0	WALK	1	7	1	7	1	7	1	1	CLK RST	YYSES	0	Qeruere	1	2		4		6			0
1	DONT WALK	1	9	1	24	1	14	1	1		RR1 CLR	5	RED LOCK									1
2	MIN GREEN	5	5	1	5	1	5	1	1		EVA DLY	0	YEL LOCK									2
3	TYPE 3 DET	0	0	0	0	0	0	0	0		EVA CLR	5	V RECALL		2				6			3
4	ADD/VEH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		EVB DLY	0	P RECALL									4
5	PASSAGE	2.0	3.9	0.9	2.0	0.9	3.9	0.9	0.9		E'VB CLK	5	EQU L				4		6			5
6	MAX GAP	2.0	5.9	0.9	2.0	0.9	5.9	0.9	0.9		EVC DLY	0	RT OLA									6
7	MIN GAP	2.0	3.0	0.9	2.0	0.9	3.0	0.9	0.9		EVC CLR	5	RT OLB									7
8	MAX EXT	25	30	9	25	9	30	9	9		EVD DLY	0	DBL ENTRY									8
9	MAX 2		40		35		40				EVD CLR	5	MAX 2 PH S		2		4		6			9
A	MAX 3									MO	MAX EV	255	LAG PHI SES				A	0	1			A
B										DAY	RR2 CLR	5	RED RE,									B
C	REDUCE BY	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	DOW			RपST TV WALK									C
D	EVERY	1.0	0.9	1.0	1.0	1.0	0.9	1.0	1.0	HR			78 3 PHASES									D
E	YELLOW	3.7	4.1	3.0	4.1	3.0	4.1	3.0	3.0	MIN			YFE START UP		2				6			E
F	RED	1.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	SEC			E RST PHASE				4					F
$3.5{ }^{\prime}$	PED XING FT		44^{\prime}		98^{\prime}		63^{\prime}							1	2	3	4	5	6	7	8	

FCO	3
FC1	3
F'C2	10
FCA	0.0
FCB	0.0
FCC	0.0
FCD	0.0

FDO	TB SELECT	1
FD3 PED SELECT	0	
FD4 7 WIRE	0	
FD5 PERMISSIVE	0	
FD8 OS SEEKING	1	

CO5 FLASH TYPE	1
CC2 DOWNLOAD	1

CO1 MANUAL CP
CO2 MASTER CP
CO3 CURRENT CP
CO4 LAST CP
CO7 TRNSMT CP
COD MANUAL OFFSET
CAO LOCAL CYCLE TIMER
CBO MASTER CYCLE TIMER
CAA LOCAL OFFSET
CBA MASTER OFFSET

CCB/CDB OFFSET TIMER
$C C C / C D C$ LAG GREEN TIMER
$C C D / C D D$ FORCE OFF TIMER
CCE/CDE IOONG GREEN TIMER
$C C F / C D F$ NO GREEN TIMER

TIME OF DAY ACTIVITY TABLE											
7+EVENT+HR+MIN+ACT+"E"+ON/OFF+DOW LTS											
				ON/	S	M	T	W	T	F	5
	HR	MIN	ACT	OFE	1	2	3	4	5	6	7
0	06	00	2	ON/		2	3	4	5	6	
1	08	00	2			2	3	4	5	6	
2	14	00	2	ON/		2	3	4	5	6	
3	21	00	2	-		2	3	4	5	6	
4											
5				i							
6											
7											
8											
9											
A											
B		里至	- 8	Sat	- p^{2}	MEA	ysm	$2=6$	53		
C											
D											
E											
F											

1 TYPE OF MAX TERMINATION
2 MAX 2
3 MAA 3
4 COND SERV (1ST SELECT)
5 COND SERV (2ND SELECT;
6 ENERGIZE AUX OUTPUT-RED

TIME OF DAY NAX RECALL (IST SELECT)
A TRAFFIC ACT. MAX 2 OPERATION
B TIME OF DAY MAX RECALL (2ND SELECT)
C YELLOW YIELD COORDINATION
D YELLOW YIELD COORDINATION
E TIME OF DAY FREE OPERATION
F FLASHING OPERATION
ENERGIZE AUX OUTPUT-GREEN

CONTROL PLAN TIME OF DAY												
$9+\mathrm{EVENT}+\mathrm{HR}+\mathrm{MIN}+\mathrm{CP}+\mathrm{OS}+\mathrm{E}+\mathrm{DOW}$												
					S		M	T	W	T	F	S
	HR	MIN	CP	OS	1		2	3	4	5	6	7
0												
1												
2												
3												
4												
5												
6												
7												
8												
9												
A												
E												
C												
D												
E												
F												

Signal Length Timing Study

City:
San Diego
Intersection:
Dairy Mart and San Ysidro
Date:
1/28/2020
Day:
Tuesday

7:30 am - 7:45 am

Cycle	Phase	Duration
1	NL/SL	0:00:15
	NT/ST	0:00:20
	WT/WL	0:00:10
	ET/WT	0:00:15
2	NL/NT	0:00:10
	NT/ST	0:00:25
	WL/WT	0:00:25
	ET/WT	0:00:25
3	NL/SL	0:00:20
	NT/ST	0:00:35
	WL/WT	0:00:15
	ET/WT	0:00:30
4	NL/SL	0:00:20
	ST/SL	0:00:10
	NT/ST	0:00:20
	EL/ET	0:00:15
	ET/WT	0:00:15
5	NL/NT	0:00:15
	NT/ST	0:00:25
	EL/ET	0:00:15
	ET/WT	0:00:20
6	NL/SL	0:00:20
	ET/WT	0:00:35
	EL/ET	0:00:10
	ET/WT	0:00:20
7	NL/SL	0:00:20
	NT/ST	0:00:10
	ET/WT	0:00:30
8	NT/ST	0:00:35
	ET/WT	0:00:30
9	NL/SL	0:00:15
	NT/ST	0:01:15
10	NL/SL	0:00:10
	WL/WT	0:00:10
	ET/WT	0:00:30

4:30 pm - 4:45 pm

Cycle	Phase	Duration
1	EL/WL	0:00:10
	WL/WT	0:00:10
	ET/WT	0:00:20
	NL/SL	0:00:15
	NT/ST	0:01:20
2	EL/WL	0:00:15
	WT/WL	0:00:25
	ET/WT	0:00:25
	NL/SL	0:00:25
	NT/ST	0:01:25
3	WL/WT	0:00:30
	ET/WT	0:00:20
	NL/SL	0:00:15
	NT/ST	0:00:55
4	WL/WT	0:00:20
	ET/WT	0:00:20
	NT/ST	0:00:20
5	EL/WL	0:00:15
	ET/WT	0:00:30
	NL/NT	0:00:20
	NT/ST	0:00:30
6	EL/WL	0:00:15
	ET/WT	0:00:35
	NL/SL	0:00:15
	NT/ST	0:00:45
7	WL/WT	0:00:25
	ET/WT	0:00:30
	NL/SL	0:00:25
	NT/ST	0:01:05
8	EL/WL	0:00:10
	ET/WT	0:00:30

11	$\mathrm{NL} / \mathrm{SL}$	$0: 00: 15$
	$\mathrm{NT} / \mathrm{ST}$	$0: 00: 25$
	$\mathrm{EL} / \mathrm{ET}$	$0: 00: 15$
	$\mathrm{ET} / \mathrm{WT}$	$0: 00: 20$
12	$\mathrm{NL} / \mathrm{NT}$	$0: 00: 15$
	$\mathrm{NT} / \mathrm{ST}$	$0: 00: 10$
	$\mathrm{WL} / \mathrm{WT}$	$0: 00: 15$
	$\mathrm{ET} / \mathrm{WT}$	$0: 00: 15$
13	$\mathrm{NL} / \mathrm{NT}$	$0: 00: 10$
	$\mathrm{NT} / \mathrm{ST}$	$0: 00: 40$

Prepared by AimTD LLC
cs@aimtd.com
714.253.7888

Signal Length Timing Study

Signal Length Timing Study

City:
San Diego
Intersection:
I-5 NB Ramps and San Ysidro
Date:
1/28/2020
Day:
Tuesday

7:30 am - 7:45 am

Cycle	Phase	Duration
1	ET/WT	0:01:00
	NL/NR	0:00:10
	WT/WL	0:00:35
2	ET/WT	0:00:30
	NL/NR	0:00:20
	WT/WL	0:00:30
3	ET/WT	0:00:50
	NL/NR	0:00:20
	WT/WL	0:00:20
4	ET/WT	0:00:50
	NL/NR	0:00:10
	WT/WL	0:00:20
5	ET/WT	0:00:30
	WT/WL	0:00:30
6	ET/WT	0:00:35
	NL/NR	0:00:10
	WT/WL	0:00:35
7	ET/WT	0:00:35
	NL/NR	0:00:10
	WT/WL	0:00:25
8	ET/WT	0:00:45
	NL/NR	0:00:15
	WT/WL	0:00:25
9	ET/WT	0:00:35
	NL/NR	0:00:10
	WT/WL	0:00:30
10	ET/WT	0:00:40
	NL/NR	0:00:15
	WT/WL	0:00:15
11	ET/WT	0:00:45
	NL/NR	0:00:10
	WT/WL	0:00:30
12	ET/WT	0:00:45

5:00 pm - 5:15 pm
0:01:45

0:01:20

0:01:30

0:01:20

0:01:00
0:01:20

0:01:10

0:01:25

0:01:15

0:01:10

0:01:25

0:00:45

Cycle	Phase	Duration
1	WT/WL	0:00:20
	ET/WT	0:00:45
	NL/NR	0:00:15
2	WT/WL	0:00:20
	ET/WT	0:00:55
	NL/NR	0:00:15
3	WT/WL	0:00:25
	ET/WT	0:00:35
	NL/NR	0:00:15
4	WT/WL	0:00:25
	ET/WT	0:00:20
	NL/NR	0:00:15
5	WT/WL	0:00:10
	ET/WT	0:00:45
6	WT/WL	0:00:20
	ET/WL	0:00:30
7	WT/WL	0:00:15
	ET/WT	0:00:35
	NL/NR	0:00:10
8	WT/WL	0:00:30
	ET/WT	0:00:45
9	WT/WL	0:00:25
	ET/WT	0:00:40
	NL/NR	0:00:15
10	WT/WL	0:00:20
	ET/WT	0:00:25
	NL/NR	0:00:15
11	WT/WL	0:00:15
	ET/WT	0:00:30
12	WT/WL	0:00:20
	ET/WT	0:00:30
	NL/NR	0:00:15
13	WT/WL	0:00:15
	ET/WT	0:00:45
	NL/NR	0:00:15

			$\begin{gathered} \text { avg } \\ \text { 0:01:17 } \end{gathered}$	14	WT/WL	0:00:25

Prepared by AimTD LLC
cs@aimtd.com
714.253.7888

Signal Length Timing Study

City:

Intersection:
Date:
Day:

San Diego
Hollister and Tocayo
1/28/2020
Tuesday

7:00 am - 7:15 am

Cycle	Phase	Duration
1	ET/WT	0:01:15
	ST/SL	0:00:35
	NT/ST	0:00:55
	EL/WL	0:00:25
2	ET/WT	0:00:55
	ST/SL	0:00:40
	NT/ST	0:00:35
	EL/WL	0:00:25
	EL/ET	0:00:15
3	ET/WT	0:00:50
	ST/SL	0:00:35
	NT/ST	0:00:35
	EL/WL	0:00:15
4	ET/WT	0:00:35
	ST/SL	0:00:50
	NT/ST	0:00:35
5	EL/WL	0:00:15
	ST/SL	0:00:40
	NT/ST	0:00:15
6	ET/WT	0:00:20
	ST/SL	0:00:40
	NT/ST	0:00:20
	ET/EL	0:00:15
7	ET/WT	0:00:25
	ST/SL	0:00:35
	NT/ST	0:00:35
	EL/WL	0:00:15

4:00 pm - 4:15 pm

Cycle	Phase	Duration
1	NL/SL	0:00:20
	NT/ST	0:00:15
	ET/WT	0:00:15
2	ST/SL	0:00:45
	NT/ST	0:00:30
	WT/WL	0:00:15
	ET/EL	0:00:15
3	NL/SL	0:00:45
	NT/ST	0:00:15
	WT/WL	0:00:20
	ET/EL	0:00:30
4	NL/SL	0:00:35
	NT/ST	0:00:15
	EL/WL	0:00:10
	ET/WT	0:00:25
5	NL/SL	0:00:40
	ST/SL	0:00:25
	EL/WL	0:00:25
6	NL/SL	0:00:10
	NT/NL	0:00:25
7	NL/SL	0:00:10
	ST/SL	0:00:30
	ET/WT	0:00:25
8	NL/SL	0:00:20
	NL/NT	0:00:15
9	NL/SL	0:00:35
	WT/WL	0:00:20
	ET/EL	0:00:15
10	NL/SL	0:00:20
	NT/ST	0:00:45
	WT/WL	0:00:20
	ET/WT	0:00:15
11	NL/SL	0:00:25
	NT/NL	0:00:15
	NT/ST	0:00:30

	$\mathrm{EL} / \mathrm{WL}$	$0: 00: 10$
12	$\mathrm{NL} / \mathrm{SL}$	$0: 00: 55$
	$\mathrm{ST} / \mathrm{SL}$	$0: 00: 20$

Prepared by AimTD LLC
cs@aimtd.com
714.253.7888

APPENDIX B

Data from CDPR - Goat Canyon Sediment Management Site

Date	Haul Total (cy)	Invoice \#	\# Truck Trips	Truck Type	Project Location	Customer
11/7/2016	320	139	8	*(8) 40 cy roll off container	Missing Daily Spreadsheets for roll-off containers	
10/29/2016	11,408		368			
10/14/2016	3,596		116	637 Cat Scraper (2 scrappers, on an average 58 loads per day)	Border Field State Park	State Parks
10/17/2016	2,666		86	637 Cat Scraper (2 scrappers, on an average 43 loads per day)	Border Field State Park	State Parks
10/18/2016	1,116		36	637 Cat Scraper (2 scrappers, on an average 17 loads per day)	Border Field State Park	State Parks
10/19/2016	4,030		130	637 Cat Scraper (2 scrappers, on an average 65 loads per day)	Border Field State Park	State Parks
3/7/2017	2314	151	172		Missing Daily Spreadsheets	
3/7/2017	80	151	2	*(2) 40 cy roll off container	Missing Daily Spreadsheets	
4/15/2017	2236	155	172			
3/4/2017	104		8	export, super tens (1 truck)	Border Field Park	Hofer
3/8/2017	208		16	export super tens(2 trucks, 8 loads each)	Border Field Park	Hofer
3/9/2017	208		16	export super tens(2 trucks, 8 loads each)	Border Field Park	Hofer
4/10/2017	1105		85	export, super tens, (11 trucks, on an average 6-8 loads each)	Border Patrol	Otay Mesa
4/11/2017	611		47	export, super tens, (10 trucks, on an average 4-5 loads each)	Border Patrol	Otay Mesa
		Avg	34			
4/29/2017	4710	156	314			
4/24/2017	1155		77	bottom dumps, (14 trucks, on an average 6-7 loads per day)	Otay Mesa	Caltrans
4/25/2017	990		66	bottom dumps, (11 trucks, on an average 6 loads per day)		Caltrans
4/26/2017	1155		77	bottom dumps, (11 trucks, on an average 7 loads per day)	Otay Mesa	Caltrans
4/27/2017	1410		94	bottom dumps, (15 trucks, on an average 6-7 loads per day)	Otay Mesa	Caltrans
		Avg	79			
5/13/2017	5919	157	443			
5/1/2017	780		60	super tens, (10 trucks, on an average 6 loads per day)	Otay Mesa	Cerrudo
5/2/2017	1092		84	super tens, (11 trucks, on an average 6-8 loads per day)	Otay Mesa	Cerrudo
5/3/2017	1144		88	super tens, (11 trucks, on an average 8 loads per day)	Otay Mesa	Cerrudo
5/4/2017	182		14	super tens, (2 trucks, on an average 7 loads per day)	Otay Mesa	Cerrudo
5/9/2017	1014		78	super tens, (12 trucks, on an average 6-7 loads per day)	Otay Mesa	Cerrudo
5/11/2017	1200		80	super tens, (10 trucks, on an average 8 loads per day)	Otay Mesa	Cerrudo
5/12/2017	507		39	super tens, (6 trucks, on an average 6-7 loads per day)		
		Avg	63			
5/22/2017-6/18/2017	2175	158	145	export, bottom dumps (17 trucks, on an average 7-10 loads per day)	Terra Bella Nursery, Chula Vista	Western
6/18/2017	400	158	10	*(10) 40 cy roll off container		
6/18/2017	360	158	9	*(9) 40 cy roll off container		
7/27/2017	4895	161	361		Hofer Facility, Chula Vista	
	1515		101	export, bottom dumps 15 cy (10 trucks, on an average 9-10 truck loads)	Airway Rd	
	1716		132	super tens (13 cy) (15 trucks, 8-9 per day)	Border Field State Park	
	1664		128	export, super tens (14 trucks, 9-10 loads per day)		
		Avg	120			
7/27/2017	160	161	4	*(4) 40 cy roll off container of matrial from lower basin and removed off-site.		
8/20/2017	1586	165	122	export, super tens (12 trucks, 10-11 loads per day)	From Goat Canyon to Hofer Facility	
8/11/2017			178	(2 trucks, every 5 minutes)	Border Field State Park	
8/14/2017			88	(2 trucks, every 5 minutes)	Border Field State Park	
8/15/2017			123	(2 trucks, every 5 minutes)	Border Field State Park	

Date	Invoice \#	Haul Total (cy)	\# Truck Trips	Truck Type	Project Location	Customer	Truck Volume/load (cy)
10/1/2017	170	41984	1388				
8/15/2017		3434	123	(2 trucks, 60-63 loads per day)	Border Field		31
8/16/2017		3434	136	(2 trucks, 63-73 loads per day)	Border Field		31
8/17/2017		4030	130	(2trucks, 65 loads per day)	Border Field		31
8/18/2017		4712	152	(2 trucks, $74-78$ loads per day)	Border Field		31
8/21/2017		4526	146	(2 trucks, 73 loads per day)	Border Field		31
8/25/2017		3937	127	(2 trucks, 61-66 loads per day)	Border Field		31
8/28/2017		4185	135	(2 trucks, 66-67 loads per day)	Border Field		31
8/29/2017		4557	147	(2 trucks, $73-74$ loads per day)	Border Field		31
8/30/2017		4154	134	(2 trucks, 67 loads per day)	Border Field		31
8/31/2017		4495	145	(2 trucks, 72-73 loads per day)	Border Field		31
		520	13	40 CY Roll-Off Containers			40

4/26/2018	189	3930	262			
4/20/2018		1830	122	bottom dumps (10 trucks, 12-13 loads per day)	Terra Bella Nursery	15
4/21/2018		2100	140	bottom dumps (12 trucks, 10-12 loads per day)	Terra Bella Nursery	15

- Existing Conditions

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	7	\%	4	$\stackrel{7}{ }$	\%	4	7	${ }^{7}$	4	7
Traffic Volume (veh/h) 29	267	60	49	112	157	129	159	538	188	78	52
Future Volume (veh/h) 29	267	60	49	112	157	129	159	538	188	78	52
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.98	1.00		0.98	0.99		0.99	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h 34	310	70	57	130	183	150	185	626	219	91	0
Peak Hour Factor 0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, \% 3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h 63	408	339	88	434	359	687	635	610	483	687	
Arrive On Green 0.04	0.22	0.22	0.05	0.23	0.23	0.08	0.34	0.34	0.11	0.37	0.00
Sat Flow, veh/h 1767	1856	1544	1767	1856	1536	1767	1856	1554	1767	1856	1572
Grp Volume(v), veh/h 34	310	70	57	130	183	150	185	626	219	91	0
Grp Sat Flow(s),veh/h/ln1767	1856	1544	1767	1856	1536	1767	1856	1554	1767	1856	1572
Q Serve(g_s), s 1.2	10.1	2.4	2.0	3.7	6.7	3.4	4.7	22.0	5.0	2.1	0.0
Cycle Q Clear(g_c), s 1.2	10.1	2.4	2.0	3.7	6.7	3.4	4.7	22.0	5.0	2.1	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 63	408	339	88	434	359	687	635	610	483	687	
V/C Ratio(X) 0.54	0.76	0.21	0.65	0.30	0.51	0.22	0.29	1.03	0.45	0.13	
Avail Cap(c_a), veh/h 247	635	528	247	635	526	792	635	610	538	687	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 30.5	23.5	20.5	30.0	20.3	21.4	11.7	15.5	19.6	11.3	13.4	0.0
Incr Delay (d2), s/veh 7.2	2.9	0.3	7.8	0.4	1.1	0.2	1.2	43.4	0.7	0.4	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 6	4.4	0.8	1.0	1.6	0.1	1.2	2.0	15.3	1.8	0.9	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 37.7	26.4	20.8	37.8	20.7	22.5	11.9	16.6	62.9	12.0	13.8	0.0
LnGrp LOS D	C	C	D	C	C	B	B	F	B	B	
Approach Vol, veh/h	414			370			961			310	A
Approach Delay, s/veh	26.4			24.2			46.1			12.5	
Approach LOS	C			C			D			B	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), $\$ 1.5$	26.5	7.7	18.6	9.7	28.3	6.8	19.5	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax9., B	22.0	9.0	22.0	9.0	22.0	9.0	22.0	
Max Q Clear Time (g_c+117,, ©	24.0	4.0	12.1	5.4	4.1	3.2	8.7	
Green Ext Time (p_c), s	0.1	0.0	0.0	1.5	0.1	0.4	0.0	1.1

Intersection Summary

HCM 6th Ctrl Delay	33.1
HCM 6th LOS	C

Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection
Intersection Delay, s/veh 16
Intersection LOS
C

Movement EBL	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\%			\uparrow	44	7
Traffic Vol, veh/h 261	261	20	6	319	179	112
Future Vol, veh/h 261	261	20	6	319	179	112
Peak Hour Factor 0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow 297	297	23	7	363	203	127
Number of Lanes	1	0	0	1	2	1
Approach E	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		3		1	
Conflicting Approach Left S	SB		EB			
Conflicting Lanes Left	3		1		0	
Conflicting Approach RighN	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay 19	19.3		19.1		9.2	
HCM LOS	C		C		A	

Lane	NBLn1 EBLn1 SBLn1 SBLn2 SBLn3				
Vol Left, \%	2%	93%	0%	0%	0%
Vol Thru, $\%$	98%	0%	100%	100%	0%
Vol Right, \%	0%	7%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	325	281	90	90	112
LT Vol	6	261	0	0	0
Through Vol	319	0	90	90	0
RT Vol	0	20	0	0	112
Lane Flow Rate	369	319	102	102	127
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.634	0.602	0.178	0.178	0.135
Departure Headway (Hd)	6.181	6.791	6.305	6.305	3.809
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	584	530	568	568	933
Service Time	3.936	4.539	4.065	4.065	1.568
HCM Lane V/C Ratio	0.632	0.602	0.18	0.18	0.136
HCM Control Delay	19.1	19.3	10.4	10.4	7.2
HCM Lane LOS	C	C	B	B	A
HCM 95th-tile Q	4.4	3.9	0.6	0.6	0.5

Intersection
Intersection Delay, s/veh10.2
Intersection LOS B

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\boldsymbol{j}	$\overrightarrow{\mathbf{F}}$	$\hat{\mathbf{f}}$			\uparrow
Traffic Vol, ven/h	5	313	16	6	166	25
Future Vol, veh/h	5	313	16	6	166	25
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	5	344	18	7	182	27
Number of Lanes	1	1	1	0	0	1

Approach W	NB	SB
Opposing Approach	SB	NB
Opposing Lanes	1	1
Conflicting Approach Left N		WB
Conflicting Lanes Left	0	2
Conflicting Approach Righis	WB	
Conflicting Lanes Right	2	0
HCM Control Delay 10,	8.1	10
HCM LOS	A	A

Lane	NBLn1WBLn1WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	87%
Vol Thru, \%	73%	0%	0%	13%
Vol Right, \%	27%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	22	5	313	191
LT Vol	0	5	0	166
Through Vol	16	0	0	25
RT Vol	6	0	313	0
Lane Flow Rate	24	5	344	210
Geometry Grp	2	7	7	2
Degree of Util (X)	0.033	0.009	0.425	0.289
Departure Headway (Hd)	4.868	5.652	4.446	4.958
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	732	634	808	724
Service Time	2.921	3.379	2.173	2.998
HCM Lane V/C Ratio	0.033	0.008	0.426	0.29
HCM Control Delay	8.1	8.4	10.4	10
HCM Lane LOS	A	A	B	A
HCM 95th-tile Q	0.1	0	2.1	1.2

6: Clearwater Way \& Dairy Mart Rd

Intersection						
Int Delay, s/veh	2.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{7}$		1	a	r	
Traffic Vol, veh/h	19	6	12	32	7	8
Future Vol, veh/h	19	6	12	32	7	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	235	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	24	8	15	41	9	10

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	32	0	99	28
Stage 1	-	-	-	-	28	-
Stage 2	-	-	-	-	71	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1574	-	897	1044
Stage 1	-	-	-	-	992	-
Stage 2	-	-	-	-	949	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1574	-	888	1044
Mov Cap-2 Maneuver	-	-	-	-	888	-
Stage 1	-	-	-	-	992	-
Stage 2	-	-	-	-	940	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		2		8.8	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1 EBT EBR WBL WBT				
Capacity (veh/h)		965	-	-	1574	-
HCM Lane V/C Ratio		0.02	-	-	0.01	-
HCM Control Delay (s)		8.8	-	-	7.3	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	3.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{7}$			-	F	
Traffic Vol, veh/h	11	0	18	17	2	6
Future Vol, veh/h	11	0	18	17	2	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	61	61	61	61	61	61
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	18	0	30	28	3	10

Major/Minor	Major1	Major2			Minor1		
Conflicting Flow All	0	0	18	0	106	18	
\quad Stage 1	-	-	-	-	18	-	
Stage 2	-	-	-	-	88	-	
Critical Hdwy	-	-	4.13	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	-	-	2.227	-3.527	3.327		
Pot Cap-1 Maneuver	-	-	1592	-	889	1058	
Stage 1	-	-	-	-	1002	-	
Stage 2	-	-	-	-	933	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	1592	-	872	1058	
Mov Cap-2 Maneuver	-	-	-	-	872	-	
Stage 1	-	-	-	-1002	-		
Stage 2	-	-	-	-	915	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	3.8	8.6

HCM LOS A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	1004	-	-	1592	-
HCM Lane V/C Ratio	0.013	-	-0.019	-	
HCM Control Delay (s)	8.6	-	-	7.3	0
HCM Lane LOS	A	-	-	A	A
HCM 95th \%tile Q(veh)	0	-	-	0.1	-

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	1		M	
Traffic Vol, veh/h	6	3	3	5	6	5
Future Vol, veh/h	6	3	3	5	6	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	7	3	3	6	7	6

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	9	0	-	0	23	6
\quad Stage 1	-	-	-	-	6	-
\quad Stage 2	-	-	-	-	17	-
Critical Hdwy	4.13	-	-	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	2.227	-	-	-3.527	3.327	
Pot Cap-1 Maneuver	1604	-	-	-	991	1074
\quad Stage 1	-	-	-	-	1014	-
Stage 2	-	-	-	-	1003	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1604	-	-	-	987	1074
Mov Cap-2 Maneuver	-	-	-	-	987	-
Stage 1	-	-	-	-	1010	-
Stage 2	-	-	-	-	1003	-

Approach	EB	WB	SB
HCM Control Delay, s	4.8	0	8.6

HCM LOS A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1604	-	-	-1025
HCM Lane V/C Ratio	0.004	-	-	-0.012
HCM Control Delay (s)	7.3	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个 \uparrow		\％	个隹		${ }^{7}$	$\hat{}$		7	$\hat{\beta}$	
Traffic Volume（veh／h）	32	49	2	48	24	540	0	71	96	455	56	21
Future Volume（veh／h）	32	49	2	48	24	540	0	71	96	455	56	21
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate，veh／h	40	60	2	59	30	667	0	88	119	562	69	26
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh，\％	3	3	3	3	3	3	3	3	3	3	3	3
Cap，veh／h	58	1030	34	77	540	477	2	216	291	322	678	256
Arrive On Green	0.03	0.30	0.30	0.04	0.31	0.31	0.00	0.31	0.31	0.18	0.53	0.53
Sat Flow，veh／h	1767	3481	115	1767	1763	1557	1767	703	951	1767	1276	481
Grp Volume（v），veh／h	40	30	32	59	30	667	0	0	207	562	0	95
Grp Sat Flow（s），veh／h／n	1767	1763	1833	1767	1763	1557	1767	0	1655	1767	0	1757
Q Serve（g＿s），s	2.3	1.3	1.3	3.5	1.3	32.0	0.0	0.0	10.4	19.0	0.0	2.8
Cycle Q Clear（g＿c），s	2.3	1.3	1.3	3.5	1.3	32.0	0.0	0.0	10.4	19.0	0.0	2.8
Prop In Lane	1.00		0.06	1.00		1.00	1.00		0.57	1.00		0.27
Lane Grp Cap（c），veh／h	58	522	542	77	540	477	2	0	507	322	0	934
V／C Ratio（X）	0.69	0.06	0.06	0.77	0.06	1.40	0.00	0.00	0.41	1.75	0.00	0.10
Avail Cap（c＿a），veh／h	322	540	562	322	540	477	322	0	507	322	0	934
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay（d），s／veh	50.0	26.3	26.3	49.4	25.6	36.2	0.0	0.0	28.7	42.7	0.0	12.1
Incr Delay（d2），s／veh	13.5	0.0	0.0	14.8	0.0	191.5	0.0	0.0	2.4	349.2	0.0	0.2
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（ 50% ），veh／ln	1.3	0.6	0.6	1.8	0.5	37.1	0.0	0.0	4.4	39.4	0.0	1.1

Unsig．Movement Delay，s／veh

LnGrp Delay（d），s／veh	63.5	26.4	26.4	64.2	25.6	227.7	0.0	0.0	31.1	391.9	0.0	12.3
LnGrp LOS	E	C	C	E	C	F	A	A	C	F	A	B
Approach Vol，veh／h		102			756			207		657		
Approach Delay，s／veh		40.9			206.9			31.1		337.0		
Approach LOS	D			F			C		F			

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	23.5	36.5	9.0	35.4	0.0	60.0	7.9	36.5
Change Period（Y＋Rc），s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting（Gmax），s	19.0	32.0	19.0	32.0	19.0	32.0	19.0	32.0
Max Q Clear Time（g＿c＋11），s	21.0	12.4	5.5	3.3	0.0	4.8	4.3	34.0
Green Ext Time（p＿c），s	0.0	1.2	0.1	0.3	0.0	0.5	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	225.6
HCM 6th LOS	F

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		\hat{i}			-
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	0	0	0	0	0	0

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.43	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	-	-	2.227	-
Pot Cap-1 Maneuver	1019	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1020	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	1019	-	-	-	-	-
Mov Cap-2 Maneuver	1019	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1020	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	-	-

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	F	\%	4	I'	*	4	7	*	4	7
Traffic Volume (veh/h) 26	176	110	152	101	150	150	210	654	206	203	57
Future Volume (veh/h) 26	176	110	152	101	150	150	210	654	206	203	57
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.94	1.00		0.97	0.99		0.96	0.99		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h 27	183	115	158	105	156	156	219	681	215	211	0
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \% 3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h 51	309	247	203	470	384	607	702	752	456	747	
Arrive On Green 0.03	0.17	0.17	0.11	0.25	0.25	0.08	0.38	0.38	0.10	0.40	0.00
Sat Flow, veh/h 1767	1856	1483	1767	1856	1518	1767	1856	1509	1767	1856	1572
Grp Volume(v), veh/h 27	183	115	158	105	156	156	219	681	215	211	0
Grp Sat Flow(s),veh/h/ln1767	1856	1483	1767	1856	1518	1767	1856	1509	1767	1856	1572
Q Serve(g_s), s 1.1	6.9	5.3	6.6	3.4	6.5	4.0	6.3	28.7	5.4	5.8	0.0
Cycle Q Clear(g_c), s 1.1	6.9	5.3	6.6	3.4	6.5	4.0	6.3	28.7	5.4	5.8	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 51	309	247	203	470	384	607	702	752	456	747	
V/C Ratio(X) 0.53	0.59	0.47	0.78	0.22	0.41	0.26	0.31	0.91	0.47	0.28	
Avail Cap(c_a), veh/h 142	478	382	968	1345	1100	714	702	752	637	747	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 36.3	29.2	28.5	32.6	22.4	23.5	12.4	16.6	17.7	12.0	15.2	0.0
Incr Delay (d2), s/veh 8.5	1.8	1.4	6.3	0.2	0.7	0.2	1.2	16.5	0.8	0.9	0.0
Initial Q Delay(d3), s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 6	3.1	1.9	3.1	1.5	0.1	1.5	2.8	13.1	2.1	2.5	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 44.8	31.0	29.9	38.9	22.6	24.2	12.6	17.7	34.2	12.8	16.2	0.0
LnGrp LOS D	C	C	D	C	C	B	B	C	B	B	
Approach Vol, veh/h	325			419			1056			426	A
Approach Delay, s/veh	31.7			29.4			27.6			14.5	
Approach LOS	C			C			C			B	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), $\$ 2.2$	33.2	13.2	17.1	10.4	35.0	6.7	23.7	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmaxp. 5	25.5	41.5	19.5	10.5	30.5	6.1	54.9	
Max Q Clear Time (g_c+117, \mathbf{s}	30.7	8.6	8.9	6.0	7.8	3.1	8.5	
Green Ext Time (p_c), s	0.4	0.0	0.4	1.0	0.2	1.1	0.0	1.2

Intersection Summary

HCM 6th Ctrl Delay	26.0
HCM 6th LOS	C

Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

4				\Perp		4	\dagger	p	*	$\frac{1}{*}$	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	$\stackrel{7}{ }$					4	$\underset{ }{7}$	\%	4	
Traffic Volume (veh/h) 548	1	456	0	0	0	0	470	43	188	277	0
Future Volume (veh/h) 548	1	456	0	0	0	0	470	43	188	277	0
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		0.98	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No						No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856				0	1856	1856	1856	1856	0
Adj Flow Rate, veh/h 559	1	465				0	480	44	192	283	0
Peak Hour Factor 0.98	0.98	0.98				0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, \% 3	3	3				0	3	3	3	3	0
Cap, veh/h 605	1	539				0	732	608	224	1047	0
Arrive On Green 0.34	0.34	0.34				0.00	0.39	0.39	0.13	0.56	0.00
Sat Flow, veh/h 1764	3	1571				0	1856	1540	1767	1856	0
Grp Volume(v), veh/h 560	0	465				0	480	44	192	283	0
Grp Sat Flow(s),veh/h/ln1767	0	1571				0	1856	1540	1767	1856	0
Q Serve(g_s), s 33.5	0.0	30.4				0.0	23.2	2.0	11.7	8.6	0.0
Cycle Q Clear(g_c), s 33.5	0.0	30.4				0.0	23.2	2.0	11.7	8.6	0.0
Prop In Lane 1.00		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h 606	0	539				0	732	608	224	1047	0
V/C Ratio(X) 0.92	0.00	0.86				0.00	0.66	0.07	0.86	0.27	0.00
Avail Cap(c_a), veh/h 641	0	570				0	732	608	326	1047	0
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	0.00	1.00				0.00	1.00	1.00	0.93	0.93	0.00
Uniform Delay (d), s/veh 34.7	0.0	33.7				0.0	27.2	20.7	47.1	12.3	0.0
Incr Delay (d2), s/veh 18.6	0.0	12.4				0.0	4.5	0.2	13.2	0.6	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh//h7. 2	0.0	13.2				0.0	11.0	0.7	5.9	3.7	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay (d), s/veh 53.4	0.0	46.1				0.0	31.7	21.0	60.3	12.9	0.0
LnGrp LOS D	A	D				A	C	C	E	B	A
Approach Vol, veh/h	1025						524			475	
Approach Delay, s/veh	50.1						30.8			32.1	
Approach LOS	D						C			C	
Timer - Assigned Phs 1	2		4		6						
Phs Duration ($G+Y+R \mathrm{c}$), $\$ 8.6$	48.5		42.8		67.2						
Change Period (Y+Rc), s* 4.7	5.1		5.1		5.1						
Max Green Setting (Gmax) 28	34.9		39.9		34.9						
Max Q Clear Time (g_c+ $\mathrm{m} / \mathrm{l}, \mathrm{T}$	25.2		35.5		10.6						
Green Ext Time (p_c), s 0.3	2.2		2.2		1.7						
Intersection Summary											
HCM 6th Ctrl Delay 40.9											
HCM 6th LOS		D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection
Intersection Delay, s/veh14.6
Intersection LOS \quad B

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	44	7
Traffic Vol, veh/h	165	19	16	368	457	255
Future Vol, veh/h	165	19	16	368	457	255
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	3	3	3	3	3	3
Mumt Flow	174	20	17	387	481	268
Number of Lanes	1	0	0	1	2	1

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	3	1
Conflicting Approach Left SB	EB		
Conflicting Lanes Left	3	1	0
Conflicting Approach RighNB		EB	
Conflicting Lanes Right	1	0	1
HCM Control Delay	15.1	21.7	10.6
HCM LOS	C	C	B

Lane	NBLn1 EBLn1 SBLn1 SBLn2 SBLn3				
Vol Left, \%	4%	90%	0%	0%	0%
Vol Thru, $\%$	96%	0%	100%	100%	0%
Vol Right, \%	0%	10%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	384	184	229	229	255
LT Vol	16	165	0	0	0
Through Vol	368	0	229	229	0
RT Vol	0	19	0	0	255
Lane Flow Rate	404	194	241	241	268
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.692	0.399	0.392	0.392	0.252
Departure Headway (Hd)	6.161	7.421	5.873	5.873	3.386
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	586	484	611	611	1055
Service Time	3.909	5.176	3.617	3.617	1.129
HCM Lane V/C Ratio	0.689	0.401	0.394	0.394	0.254
HCM Control Delay	21.7	15.1	12.4	12.4	7.3
HCM Lane LOS	C	C	B	B	A
HCM 95th-tile Q	5.4	1.9	1.9	1.9	1

Intersection
Intersection Delay, s/veh 17
Intersection LOS \quad C

Lane	NBLn1WBLn1 WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	97%
Vol Thru, \%	74%	0%	0%	3%
Vol Right, \%	26%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	57	16	343	473
LT Vol	0	16	0	459
Through Vol	42	0	0	14
RT Vol	15	0	343	0
Lane Flow Rate	59	16	354	488
Geometry Grp	2	7	7	2
Degree of Util (X)	0.091	0.03	0.526	0.714
Departure Headway (Hd)	5.575	6.566	5.351	5.274
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	662	546	675	688
Service Time	3.613	4.293	3.078	3.298
HCM Lane V/C Ratio	0.002	0.029	0.524	0.709
HCM Control Delay	9.2	9.5	13.9	20.4
HCM Lane LOS	A	A	B	C
HCM 95th-tile Q	0.3	0.1	3.1	6

6: Clearwater Way \& Dairy Mart Rd

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	50	0	105	49
Stage 1	-	-	-	-	49	-
Stage 2	-	-	-	-	56	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1550	-	890	1017
Stage 1	-	-	-	-	971	-
Stage 2	-	-	-	-	964	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1550	-	887	1017
Mov Cap-2 Maneuver	-	-	-	-	887	-
Stage 1	-	-	-	-	971	-
Stage 2	-	-	-	-	961	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.7		8.7	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		81	-	-	1550	-
HCM Lane V/C Ratio		15	-	-	0.003	-
HCM Control Delay (s)		8.7	-	-	7.3	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		0	-	-	0	-

Intersection						
Int Delay, s/veh	2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\imath}$			-	r	
Traffic Vol, veh/h	27	1	2	32	2	15
Future Vol, veh/h	27	1	2	32	2	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	33	1	2	39	2	18

Intersection						
Int Delay, s/veh	3.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	\hat{l}		M	
Traffic Vol, veh/h	8	6	8	21	17	5
Future Vol, veh/h	8	6	8	21	17	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	11	8	11	28	22	7

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	39	0	-	0	55	25
Stage 1	-	-	- -	-	25	-
Stage 2	-	-	- -	-	30	-
Critical Hdwy	4.13	-	- -	-	6.43	6.23
Critical Hdwy Stg 1	-	-	- -	-	5.43	-
Critical Hdwy Stg 2	-	-	- -	-	5.43	-
Follow-up Hdwy	2.227	-	- -	-	3.527	3.327
Pot Cap-1 Maneuver	1565	-	- -	-	950	1048
Stage 1	-	-	- -	-	995	-
Stage 2	-	-	- -	-	990	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1565	-	- -	-	943	1048
Mov Cap-2 Maneuver	-	-	- -	-	943	-
Stage 1	-	-	- -	-	988	-
Stage 2	-	-	- -	-	990	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.2		0		8.8	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1565		-	-	965
HCM Lane V/C Ratio		0.007	-	-	-	0.03
HCM Control Delay (s)		7.3	0	-	-	8.8
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 \uparrow		\%	个		*	¢		\%	$\stackrel{1}{6}$	
Traffic Volume (veh/h)	7	35	2	91	49	382	1	52	84	465	61	13
Future Volume (veh/h)	7	35	2	91	49	382	1	52	84	465	61	13
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	7	37	2	96	52	402	1	55	88	489	64	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	16	636	34	122	436	380	2	155	248	534	800	175
Arrive On Green	0.01	0.19	0.19	0.07	0.25	0.25	0.00	0.24	0.24	0.30	0.54	0.54
Sat Flow, veh/h	1767	3397	182	1767	1763	1536	1767	635	1016	1767	1470	322
Grp Volume(v), veh/h	7	19	20	96	52	402	1	0	143	489	0	78
Grp Sat Flow(s),veh/h/ln	1767	1763	1817	1767	1763	1536	1767	0	1651	1767	0	1791
Q Serve(g_s), s	0.4	0.8	0.8	4.9	2.1	22.5	0.1	0.0	6.5	24.3	0.0	1.9
Cycle Q Clear (g_c), s	0.4	0.8	0.8	4.9	2.1	22.5	0.1	0.0	6.5	24.3	0.0	1.9
Prop In Lane	1.00		0.10	1.00		1.00	1.00		0.62	1.00		0.18
Lane Grp Cap (c), veh/h	16	330	340	122	436	380	2	0	402	534	0	975
V/C Ratio(X)	0.44	0.06	0.06	0.78	0.12	1.06	0.41	0.00	0.36	0.92	0.00	0.08
Avail Cap(c_a), veh/h	97	349	360	185	436	380	97	0	402	690	0	975
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.8	30.4	30.4	41.7	26.5	34.2	45.4	0.0	28.5	30.6	0.0	9.9
Incr Delay (d2), s/veh	18.4	0.1	0.1	11.8	0.1	62.3	85.2	0.0	2.4	14.5	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.2	0.4	0.4	2.5	0.9	14.6	0.1	0.0	2.8	12.1	0.0	0.7

Unsig. Movement Delay, s/veh

LnGrp Delay(d),s/veh	63.2	30.4	30.5	53.5	26.7	96.5	130.6	0.0	30.9	45.1	0.0	10.0
LnGrp LOS	E	C	C	D	C	F	F	A	C	D	A	B
Approach Vol, veh/h		46			550			144		567		
Approach Delay, s/veh		35.4			82.4			31.6		40.3		
Approach LOS		D			F			C		D		

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	32.0	26.7	10.8	21.5	4.6	54.0	5.3	27.0
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	35.5	19.0	9.5	18.0	5.0	49.5	5.0	22.5
Max Q Clear Time (g_c+11), s	26.3	8.5	6.9	2.8	2.1	3.9	2.4	24.5
Green Ext Time (p_c), s	1.2	0.5	0.0	0.1	0.0	0.4	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	56.9
HCM 6th LOS	E

- Opening Year Conditions

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＋	7	\％	4	「	\％	4	「	${ }^{7}$	4	$\stackrel{7}{ }$
Traffic Volume（veh／h） 30	272	61	62	114	162	132	168	562	209	87	53
Future Volume（veh／h） 30	272	61	62	114	162	132	168	562	209	87	53
Initial Q（Qb），veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT） 1.00		0.98	1.00		0.98	0.99		0.99	1.00		1.00
Parking Bus，Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow，veh／h／ln 1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate，veh／h 35	316	71	72	133	188	153	195	653	243	101	0
Peak Hour Factor 0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh，\％ 3	3	3	3	3	3	3	3	3	3	3	3
Cap，veh／h 63	409	341	98	446	369	677	619	605	481	685	
Arrive On Green 0.04	0.22	0.22	0.06	0.24	0.24	0.08	0.33	0.33	0.12	0.37	0.00
Sat Flow，veh／h 1767	1856	1544	1767	1856	1537	1767	1856	1554	1767	1856	1572
Grp Volume（v），veh／h 35	316	71	72	133	188	153	195	653	243	101	0
Grp Sat Flow（s），veh／h／ln1767	1856	1544	1767	1856	1537	1767	1856	1554	1767	1856	1572
Q Serve（g＿s），s 1.3	10.6	2.5	2.6	3.9	7.0	3.7	5.2	22.0	5.8	2.4	0.0
Cycle Q Clear（g＿c），s 1.3	10.6	2.5	2.6	3.9	7.0	3.7	5.2	22.0	5.8	2.4	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h 63	409	341	98	446	369	677	619	605	481	685	
V／C Ratio（X） 0.55	0.77	0.21	0.73	0.30	0.51	0.23	0.32	1.08	0.50	0.15	
Avail Cap（c＿a），veh／h 241	619	515	241	619	512	773	619	605	514	685	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I） 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay（d），s／veh 31.3	24.2	21.0	30.7	20.5	21.7	12.3	16.4	20.2	11.9	13.9	0.0
Incr Delay（d2），s／veh 7.3	3.4	0.3	10.1	0.4	1.1	0.2	1.3	59.7	0.8	0.5	0.0
Initial Q Delay（d3），s／veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／lm0．7	4.7	0.9	1.4	1.6	2.5	1.3	2.3	18.3	2.1	1.0	0.0
Unsig．Movement Delay，s／veh											
LnGrp Delay（d），s／veh 38.6	27.5	21.3	40.8	20.9	22.8	12.5	17.7	79.9	12.7	14.4	0.0
LnGrp LOS D	C	C	D	C	C	B	B	F	B	B	
Approach Vol，veh／h	422			393			1001			344	A
Approach Delay，s／veh	27.4			25.4			57.5			13.2	
Approach LOS	C			C			E			B	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），$\$ 2.3$	26.5	8.2	19.1	9.9	28.9	6.9	20.4	
Change Period（Y＋Rc），s 4．5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting（Gmax9．8	22.0	9.0	22.0	9.0	22.0	9.0	22.0	
Max Q Clear Time（g＿c＋I1才，©	24.0	4.6	12.6	5.7	4.4	3.3	9.0	
Green Ext Time（p＿c），s	0.1	0.0	0.0	1.4	0.1	0.4	0.0	1.1

Intersection Summary

HCM 6th Ctrl Delay	38.7
HCM 6th LOS	D

Notes

Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay．

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection Delay, s/veh18.6
Intersection LOS

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N			\uparrow	4	$\boldsymbol{\top}$
Traffic Vol, veh/h	266	20	6	340	334	114
Future Vol, veh/h	266	20	6	340	334	114
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	302	23	7	386	380	130
Number of Lanes	1	0	0	1	2	1

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	3	1
Conflicting Approach Left SB	EB		
Conflicting Lanes Left	3	1	0
Conflicting Approach RighNB		EB	
Conflicting Lanes Right	1	0	1
HCM Control Delay	23	24.4	11.4
HCM LOS	C	C	B

Lane	NBLn1 EBLn1 SBLn1 SBLn2 SBLn3				
Vol Left, \%	2%	93%	0%	0%	0%
Vol Thru, $\%$	98%	0%	100%	100%	0%
Vol Right, \%	0%	7%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	346	286	167	167	114
LT Vol	6	266	0	0	0
Through Vol	340	0	167	167	0
RT Vol	0	20	0	0	114
Lane Flow Rate	393	325	190	190	130
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.717	0.657	0.342	0.342	0.144
Departure Headway (Hd)	6.567	7.281	6.497	6.497	3.996
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	547	494	550	550	883
Service Time	4.351	5.055	4.284	4.284	1.781
HCM Lane V/C Ratio	0.718	0.658	0.345	0.345	0.147
HCM Control Delay	24.4	23	12.7	12.7	7.5
HCM Lane LOS	C	C	B	B	A
HCM 95th-tile Q	5.8	4.7	1.5	1.5	0.5

Intersection

Intersection Delay, s/veh12.6
Intersection LOS B

Lane	NBLn1WBLn1 WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	49%
Vol Thru, \%	84%	0%	0%	51%
Vol Right, \%	16%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	37	7	319	346
LT Vol	0	7	0	169
Through Vol	31	0	0	177
RT Vol	6	0	319	0
Lane Flow Rate	41	8	351	380
Geometry Grp	2	7	7	2
Degree of Util (X)	0.06	0.013	0.478	0.526
Departure Headway (Hd)	5.351	6.119	4.908	4.985
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	663	582	729	719
Service Time	3.351	3.885	2.674	3.057
HCM Lane V/C Ratio	0.061	0.014	0.481	0.529
HCM Control Delay	8.7	9	12.1	13.5
HCM Lane LOS	A	A	B	B
HCM 95th-tile Q	0.2	0	2.6	3.1

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	4	ri	
Traffic Vol, veh/h	34	6	26	172	7	8
Future Vol, veh/h	34	6	26	172	7	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	235	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	43	8	33	218	9	10

Major/Minor	Major1	Major2		Minor1		
Conflicting Flow All	0	0	51	0	331	47
\quad Stage 1	-	-	-	-	47	-
\quad Stage 2	-	-	-	-	284	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1549	-	662	1019
\quad Stage 1	-	-	-	-	973	-
\quad Stage 2	-	-	-	-	762	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1549	-	648	1019
Mov Cap-2 Maneuver	-	-	-	-	648	-
Stage 1	-	-	-	-	973	-
Stage 2	-	-	-	-	746	-

Approach	EB	WB	NB
HCM Control Delay, s	0	1	9.6

HCM LOS A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	804	-	-1549	-	
HCM Lane V/C Ratio	0.024	-	-0.021	-	
HCM Control Delay (s)	9.6	-	-	7.4	-
HCM Lane LOS	A	-	-	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.1	-

Intersection						
Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	r	
Traffic Vol, veh/h	27	0	18	156	2	6
Future Vol, veh/h	27	0	18	156	2	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	61	61	61	61	61	61
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	44	0	30	256	3	10

Major/Minor	Major1	Major2			Minor1		
Conflicting Flow All	0	0	44	0	360	44	
Stage 1	-	-	-	-	44	-	
Stage 2	-	-	-	-	316	-	
Critical Hdwy	-	-	4.13	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	-	-	2.227	-	3.527	3.327	
Pot Cap-1 Maneuver	-	-	1558	-	637	1023	
Stage 1	-	-	-	-	976	-	
Stage 2	-	-	-	-	737	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	1558	-	623	1023	
Mov Cap-2 Maneuver	-	-	-	-	623	-	
Stage 1	-	-	-	-	976	-	
Stage 2	-	-	-	-	721	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.8	9.1

HCMLOS A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	882	-	-	1558	-	
HCM Lane V/C Ratio	0.015	-	-	0.019	-	
HCM Control Delay (s)	9.1	-	-	7.4	0	
HCM Lane LOS	A	-	-	A	A	
HCM 95th \%tile Q(veh)	0	-	-	0.1	-	

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	1		M	
Traffic Vol, veh/h	13	18	142	5	6	43
Future Vol, veh/h	13	18	142	5	6	43
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	15	20	161	6	7	49

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个t		*	㻢		${ }^{7}$	\hat{p}		\%	\uparrow	
Traffic Volume (veh/h)	33	50	2	84	24	555	0	74	102	472	60	21
Future Volume (veh/h)	33	50	2	84	24	555	0	74	102	472	60	21
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	41	62	2	104	30	685	0	91	126	583	74	26
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	59	923	30	132	540	477	2	212	294	321	692	243
Arrive On Green	0.03	0.26	0.26	0.07	0.31	0.31	0.00	0.31	0.31	0.18	0.53	0.53
Sat Flow, veh/h	1767	3485	112	1767	1763	1557	1767	693	960	1767	1304	458
Grp Volume(v), veh/h	41	31	33	104	30	685	0	0	217	583	0	100
Grp Sat Flow(s),veh/h/ln	1767	1763	1834	1767	1763	1557	1767	0	1653	1767	0	1762
Q Serve(g_s), s	2.4	1.4	1.4	6.0	1.3	32.0	0.0	0.0	11.0	19.0	0.0	2.9
Cycle Q Clear(g_c), s	2.4	1.4	1.4	6.0	1.3	32.0	0.0	0.0	11.0	19.0	0.0	2.9
Prop In Lane	1.00		0.06	1.00		1.00	1.00		0.58	1.00		0.26
Lane Grp Cap(c), veh/h	59	467	486	132	540	477	2	0	506	321	0	936
V/C Ratio(X)	0.70	0.07	0.07	0.79	0.06	1.44	0.00	0.00	0.43	1.81	0.00	0.11
Avail Cap(c_a), veh/h	321	540	562	321	540	477	321	0	506	321	0	936
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	50.0	28.7	28.7	47.5	25.6	36.2	0.0	0.0	28.9	42.7	0.0	12.2
Incr Delay (d2), s/veh	13.8	0.1	0.1	9.9	0.0	208.1	0.0	0.0	2.6	378.4	0.0	0.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.3	0.6	0.6	3.0	0.5	39.3	0.0	0.0	4.7	42.0	0.0	1.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	63.8	28.8	28.8	57.4	25.6	244.3	0.0	0.0	31.6	421.2	0.0	12.4
LnGrp LOS	E	C	C	E	C	F	A	A	C	F	A	B
Approach Vol, veh/h		105			819			217			683	
Approach Delay, s/veh		42.5			212.6			31.6			361.3	
Approach LOS		D			F			C			F	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	23.5	36.5	12.3	32.2	0.0	60.0	8.0	36.5
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	19.0	32.0	19.0	32.0	19.0	32.0	19.0	32.0
Max Q Clear Time (g_c+I1), s	21.0	13.0	8.0	3.4	0.0	4.9	4.4	34.0
Green Ext Time (p_c), s	0.0	1.2	0.2	0.3	0.0	0.5	0.1	0.0

Intersection Summary
HCM 6th Ctrl Delay 236.9

HCM 6th LOS
F

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			A	l	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	0	0	0	0	0	0

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	1	1	1	0	-	0
\quad Stage 1	1	-	-	-	-	-
\quad Stage 2	0	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-
Pot Cap-1 Maneuver	1019	1081	1615	-	-	-
\quad Stage 1	1020	-	-	-	-	-
\quad Stage 2	-	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	1019	1081	1615	-	-	-
Mov Cap-2 Maneuver	1019	-	-	-	-	-
Stage 1	1020	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	0	0	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1615	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-	-
HCM Control Delay (s)	0	-	0	-	-
HCM Lane LOS	A	-	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-	-

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Lane Configurations	\%	4		\%	4	7	\%	4	7	\%	4	7
Future Volume (veh/h)	27	180	112	161	103	156	153	237	810	219	213	58
Ped-Bike Adj(A_pbT)	1.00		0.94	1.00		0.97	0.99		0.96	1.00		1.00
Work Zone On Approach		No			No			No			No	
Adj Flow Rate, veh/h	28	188	117	168	107	162	159	247	844	228	222	0
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Arrive On Green	0.03	0.17	0.17	0.12	0.26	0.26	0.08	0.37	0.37	0.11	0.40	0.00
Grp Volume(v), veh/h	28	188	117	168	107	162	159	247	844	228	222	0
Q Serve(g_s), s	1.2	7.2	5.5	7.1	3.5	6.8	4.2	7.4	28.4	6.0	6.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
V/C Ratio(X)	0.54	0.60	0.47	0.78	0.22	0.41	0.27	0.36	1.13	0.54	0.30	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.8	29.6	28.9	32.8	22.3	23.6	12.9	17.6	19.7	12.7	15.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Unsig. Movement Delay, s/veh

$\operatorname{Ln} G r p$											
LOS	D	C	C	D	C	C	B	B	F	B	B

Approach Delay, s/veh	32.2			29.5			69.2	15.3
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Q Clear Time (g_c+19, ©s	30.4	9.1	9.2	6.2	8.3	3.2	8.8	
y								
HCM 6th Ctrr Delay		47.4						
HCM 6th LOS		D						

Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

4		\square		\Perp		4	4	\%	-	1	4
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	F					4	F	${ }^{7}$	4	
Traffic Volume (veh/h) 581	1	491	0	0	0	0	623	57	193	293	0
Future Volume (veh/h) 581	1	491	0	0	0	0	623	57	193	293	0
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		0.98	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No						No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856				0	1856	1856	1856	1856	0
Adj Flow Rate, veh/h 593	1	501				0	636	58	197	299	0
Peak Hour Factor 0.98	0.98	0.98				0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, \% 3	3	3				0	3	3	3	3	0
Cap, veh/h 627	1	558				0	704	584	229	1024	0
Arrive On Green 0.36	0.36	0.36				0.00	0.38	0.38	0.13	0.55	0.00
Sat Flow, veh/h 1764	3	1571				0	1856	1540	1767	1856	0
Grp Volume(v), veh/h 594	0	501				0	636	58	197	299	0
Grp Sat Flow(s),veh/h/ln1767	0	1571				0	1856	1540	1767	1856	0
Q Serve(g_s), s 35.9	0.0	33.2				0.0	35.6	2.7	12.0	9.5	0.0
Cycle Q Clear(g_c), s 35.9	0.0	33.2				0.0	35.6	2.7	12.0	9.5	0.0
Prop In Lane 1.00		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h 628	0	558				0	704	584	229	1024	0
V/C Ratio(X) 0.95	0.00	0.90				0.00	0.90	0.10	0.86	0.29	0.00
Avail Cap(c_a), veh/h 641	0	570				0	704	584	326	1024	0
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	0.00	1.00				0.00	1.00	1.00	0.94	0.94	0.00
Uniform Delay (d), s/veh 34.4	0.0	33.6				0.0	32.2	22.0	46.9	13.2	0.0
Incr Delay (d2), s/veh 22.8	0.0	16.7				0.0	17.1	0.3	14.1	0.7	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/1/h9.0	0.0	15.0				0.0	18.9	1.0	6.2	4.0	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d), s/veh 57.3	0.0	50.3				0.0	49.3	22.3	61.0	13.8	0.0
LnGrp LOS E	A	D				A	D	C	E	B	A
Approach Vol, veh/h	1095						694			496	
Approach Delay, s/veh	54.1						47.1			32.6	
Approach LOS	D						D			C	
Timer - Assigned Phs 1	2		4		6						
Phs Duration ($G+Y+R \mathrm{c}$), $\$ 9.0$	46.9		44.2		65.8						
Change Period (Y+Rc), s* 4.7	5.1		5.1		5.1						
Max Green Setting (Gmak)28	34.9		39.9		34.9						
Max Q Clear Time (g_c+MIIL, ©s	37.6		37.9		11.5						
Green Ext Time (p_c), s 0.3	0.0		1.2		1.8						
Intersection Summary											
HCM 6th Ctrl Delay 47.3											
HCM 6th LOS D											

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.
Intersection
Intersection Delay, s/veh32.7
Intersection LOS \quad D

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	$\mathbf{4}$	$\widetilde{7}$
Traffic Vol, veh/h	168	19	16	532	502	260
Future Vol, veh/h	168	19	16	532	502	260
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	177	20	17	560	528	274
Number of Lanes	1	0	0	1	2	1

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	3	1
Conflicting Approach Left SB	EB		
Conflicting Lanes Left	3	1	0
Conflicting Approach RighNB		EB	
Conflicting Lanes Right	1	0	1
HCM Control Delay	16.8	67	12
HCM LOS	C	F	B

Lane	NBLn1 EBLn1 SBLn1	SBLn2 SBLn3			
Vol Left, \%	3%	90%	0%	0%	0%
Vol Thru, $\%$	97%	0%	100%	100%	0%
Vol Right, \%	0%	10%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	548	187	251	251	260
LT Vol	16	168	0	0	0
Through Vol	532	0	251	251	0
RT Vol	0	19	0	0	260
Lane Flow Rate	577	197	264	264	274
Geometry Grp	7	7	7	7	7
Degree of Util (X)	1.016	0.436	0.456	0.456	0.282
Departure Headway (Hd)	6.34	7.973	6.211	6.211	3.714
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	571	449	576	576	955
Service Time	4.112	5.761	3.986	3.986	1.488
HCM Lane V/C Ratio	1.011	0.439	0.458	0.458	0.287
HCM Control Delay	67	16.8	14.1	14.1	8
HCM Lane LOS	F	C	B	B	A
HCM 95th-tile Q	15.2	2.2	2.4	2.4	1.2

Intersection
Intersection Delay, s/veh 23
Intersection LOS C

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	16	\mathbf{r}	\hat{f}			\uparrow
Traffic Vol, veh/h	16	350	200	17	468	50
Future Vol, veh/h	16	350	200	17	468	50
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	16	361	206	18	482	52
Number of Lanes	1	1	1	0	0	1
Approach	WB		NB		SB	
Opposing Approach			SB	NB		
Opposing Lanes	0	1	1			
Conflicting Approach Left NB			WB			
Conflicting Lanes Left	1	0	2			
Conflicting Approach RighISB	WB					
Conflicting Lanes Right	1	2	0			
HCM Control Delay	16.8	12.5	31.8			
HCM LOS	C	B	D			

Lane	NBLn1 WBLn1 WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	90%
Vol Thru, \%	92%	0%	0%	10%
Vol Right, \%	8%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	217	16	350	518
LT Vol	0	16	0	468
Through Vol	200	0	0	50
RT Vol	17	0	350	0
Lane Flow Rate	224	16	361	534
Geometry Grp	2	7	7	2
Degree of Util (X)	0.37	0.033	0.595	0.842
Departure Headway (Hd)	5.949	7.159	5.937	5.674
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	602	498	606	635
Service Time	4.022	4.927	3.704	3.73
HCM Lane V/C Ratio	0.372	0.032	0.596	0.841
HCM Control Delay	12.5	10.2	17.1	31.8
HCM Lane LOS	B	B	C	D
HCM 95th-tile Q	1.7	0.1	3.9	9.2

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	230	0	330	229
Stage 1	-	-	-	-	229	-
Stage 2	-	-	-	-	101	-
Critical Hdwy	-	-	4.13		6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1332	-	663	808
Stage 1	-	-	-	-	807	-
Stage 2	-	-	-	-	921	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1332	-	660	808
Mov Cap-2 Maneuver	-	-	-	-	660	-
Stage 1	-	-	-	-	807	-
Stage 2	-	-	-	-	917	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		9.8	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		88	-	-	1332	-
HCM Lane V/C Ratio		. 41	-	-	0.004	-
HCM Control Delay (s)		9.8	-	-	7.7	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-1	Y	
Traffic Vol, veh/h	173	1	2	70	2	15
Future Vol, veh/h	173	1	2	70	2	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	211	1	2	85	2	18

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	212	0	301	212
Stage 1	-	-	-	-	212	-
Stage 2	-	-	-	-	89	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1352	-	688	826
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	932	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1352	-	687	826
Mov Cap-2 Maneuver	-	-	-	-	687	-
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	930	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		9.6	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		807	-	-	1352	-
HCM Lane V/C Ratio		0.026	-	-	0.002	-
HCM Control Delay (s)		9.6	-	-	7.7	0
HCM Lane LOS		A	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	2.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	1		4	
Traffic Vol, veh/h	49	151	44	21	17	21
Future Vol, veh/h	49	151	44	21	17	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	64	199	58	28	22	28

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个 4		\%	㻢		*	$\hat{\sigma}$		\%	\uparrow	
Traffic Volume (veh/h)	7	36	2	103	50	400	1	57	123	479	67	13
Future Volume (veh/h)	7	36	2	103	50	400	1	57	123	479	67	13
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	7	38	2	108	53	421	1	60	129	504	71	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	16	610	32	136	436	380	2	122	262	548	817	161
Arrive On Green	0.01	0.18	0.18	0.08	0.25	0.25	0.00	0.24	0.24	0.31	0.54	0.54
Sat Flow, veh/h	1767	3403	177	1767	1763	1536	1767	518	1113	1767	1501	296
Grp Volume(v), veh/h	7	20	20	108	53	421	1	0	189	504	0	85
Grp Sat Flow(s), veh/h/ln	1767	1763	1817	1767	1763	1536	1767	0	1631	1767	0	1797
Q Serve(g_s), s	0.4	0.8	0.9	5.5	2.1	22.5	0.1	0.0	9.1	25.0	0.0	2.1
Cycle Q Clear(g_c), s	0.4	0.8	0.9	5.5	2.1	22.5	0.1	0.0	9.1	25.0	0.0	2.1
Prop In Lane	1.00		0.10	1.00		1.00	1.00		0.68	1.00		0.16
Lane Grp Cap(c), veh/h	16	316	326	136	436	380	2	0	384	548	0	978
V/C Ratio(X)	0.44	0.06	0.06	0.79	0.12	1.11	0.41	0.00	0.49	0.92	0.00	0.09
Avail Cap(c_a), veh/h	97	349	360	185	436	380	97	0	384	690	0	978
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.8	31.0	31.0	41.2	26.5	34.2	45.4	0.0	30.0	30.3	0.0	9.9
Incr Delay (d2), s/veh	18.4	0.1	0.1	15.1	0.1	78.7	85.2	0.0	4.4	15.3	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.2	0.4	0.4	2.9	0.9	16.3	0.1	0.0	4.0	12.6	0.0	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	63.2	31.1	31.1	56.4	26.7	112.9	130.6	0.0	34.5	45.5	0.0	10.1
LnGrp LOS	E	C	C	E	C	F	F	A	C	D	A	B
Approach Vol, veh/h		47			582			190			589	
Approach Delay, s/veh		35.9			94.5			35.0			40.4	
Approach LOS		D			F			D			D	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	32.7	25.9	11.5	20.8	4.6	54.0	5.3	27.0
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	35.5	19.0	9.5	18.0	5.0	49.5	5.0	22.5
Max Q Clear Time (g_c+11), s	27.0	11.1	7.5	2.9	2.1	4.1	2.4	24.5
Green Ext Time (p_c), s	1.2	0.6	0.0	0.1	0.0	0.5	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	61.9
HCM 6th LOS	E

- Opening Year plus Project Conditions

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	7	\%	4	7	\%	4	F	${ }^{7}$	4	$\stackrel{7}{ }$
Traffic Volume (veh/h) 30	272	61	63	114	162	132	168	562	209	88	53
Future Volume (veh/h) 30	272	61	63	114	162	132	168	562	209	88	53
Initial Q (Qb), veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.98	1.00		0.98	0.99		0.99	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h 35	316	71	73	133	188	153	195	653	243	102	0
Peak Hour Factor 0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, \% 3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h 63	409	341	99	446	370	676	618	605	481	684	
Arrive On Green 0.04	0.22	0.22	0.06	0.24	0.24	0.08	0.33	0.33	0.12	0.37	0.00
Sat Flow, veh/h 1767	1856	1544	1767	1856	1537	1767	1856	1554	1767	1856	1572
Grp Volume(v), veh/h 35	316	71	73	133	188	153	195	653	243	102	0
Grp Sat Flow(s),veh/h/ln1767	1856	1544	1767	1856	1537	1767	1856	1554	1767	1856	1572
Q Serve(g_s), s 1.3	10.6	2.5	2.7	3.9	7.0	3.7	5.2	22.0	5.8	2.4	0.0
Cycle Q Clear(g_c), s 1.3	10.6	2.5	2.7	3.9	7.0	3.7	5.2	22.0	5.8	2.4	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 63	409	341	99	446	370	676	618	605	481	684	
V/C Ratio(X) 0.55	0.77	0.21	0.74	0.30	0.51	0.23	0.32	1.08	0.51	0.15	
Avail Cap(c_a), veh/h 241	618	514	241	618	512	771	618	605	514	684	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) $\quad 1.00$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 31.3	24.2	21.0	30.7	20.5	21.7	12.4	16.4	20.2	11.9	13.9	0.0
Incr Delay (d2), s/veh 7.3	3.4	0.3	10.3	0.4	1.1	0.2	1.3	59.6	0.8	0.5	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 7	4.7	0.9	1.4	1.6	2.5	1.3	2.3	18.3	2.1	1.0	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d), s/veh 38.6	27.5	21.3	41.0	20.9	22.8	12.5	17.7	79.8	12.7	14.4	0.0
LnGrp LOS D	C	C	D	C	C	B	B	F	B	B	
Approach Vol, veh/h	422			394			1001			345	A
Approach Delay, s/veh	27.4			25.5			57.4			13.2	
Approach LOS	C			C			E			B	

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), $\$ 2.3$	26.5	8.2	19.1	9.9	28.9	6.9	20.4	
Change Period (Y+Rc), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Max Green Setting (Gmax9.8	22.0	9.0	22.0	9.0	22.0	9.0	22.0	
Max Q Clear Time (g_c+I1才, ©	24.0	4.7	12.6	5.7	4.4	3.3	9.0	
Green Ext Time (p_c), s	0.1	0.0	0.0	1.4	0.1	0.4	0.0	1.1

Intersection Summary

HCM 6th Ctrl Delay	38.7
HCM 6th LOS	D

Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow	$\stackrel{7}{ }$					4	$\underset{ }{7}$	${ }^{7}$	4	
Traffic Volume (veh/h) 291	1	327	0	0	0	0	571	12	60	151	0
Future Volume (veh/h) 291	1	327	0	0	0	0	571	12	60	151	0
Initial Q $(Q b)$, veh 0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No						No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856				0	1856	1856	1856	1856	0
Adj Flow Rate, veh/h 327	1	367				0	642	13	67	170	0
Peak Hour Factor 0.89	0.89	0.89				0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, \% 3	3	3				0	3	3	3	3	0
Cap, veh/h 471	1	421				0	1016	861	87	1187	0
Arrive On Green 0.27	0.27	0.27				0.00	0.55	0.55	0.05	0.64	0.00
Sat Flow, veh/h 1762	5	1572				0	1856	1572	1767	1856	0
Grp Volume(v), veh/h 328	0	367				0	642	13	67	170	0
Grp Sat Flow(s),veh/h/ln1767	0	1572				0	1856	1572	1767	1856	0
Q Serve(g_s), s 18.4	0.0	24.5				0.0	26.3	0.4	4.1	4.0	0.0
Cycle Q Clear(g_c), s 18.4	0.0	24.5				0.0	26.3	0.4	4.1	4.0	0.0
Prop In Lane 1.00		1.00				0.00		1.00	1.00		0.00
Lane Grp Cap(c), veh/h 473	0	421				0	1016	861	87	1187	0
V/C Ratio(X) 0.69	0.00	0.87				0.00	0.63	0.02	0.77	0.14	0.00
Avail Cap(c_a), veh/h 641	0	570				0	1016	861	326	1187	0
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	0.00	1.00				0.00	1.00	1.00	0.98	0.98	0.00
Uniform Delay (d), s/veh 36.2	0.0	38.5				0.0	17.2	11.3	51.7	7.9	0.0
Incr Delay (d2), s/veh 2.0	0.0	10.8				0.0	3.0	0.0	13.0	0.2	0.0
Initial Q Delay(d3),s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln8.1	0.0	10.6				0.0	11.6	0.2	2.1	1.6	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 38.2	0.0	49.3				0.0	20.2	11.4	64.6	8.1	0.0
LnGrp LOS D	A	D				A	C	B	E	A	A
Approach Vol, veh/h	695						655			237	
Approach Delay, s/veh	44.1						20.0			24.1	
Approach LOS	D						C			C	

Timer - Assigned Phs	1	2	4	6
Phs Duration (G+Y+Rc), $\$ 0.1$	65.3	34.5	75.5	
Change Period (Y+Rc), s* 4.7	5.1	5.1	5.1	
Max Green Setting (Gmax) 28	34.9	39.9	34.9	
Max Q Clear Time (g_c+110, s	28.3	26.5	6.0	
Green Ext Time (p_c), s	0.1	2.4	2.9	1.0

Intersection Summary

HCM 6th Ctrl Delay	31.2
HCM 6th LOS	C

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection
Intersection Delay, s/veh18.9
Intersection LOS \quad C

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	4	$\mathbf{~}$
Traffic Vol, veh/h	266	20	6	340	351	114
Future Vol, veh/h	266	20	6	340	351	114
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	302	23	7	386	399	130
Number of Lanes	1	0	0	1	2	1

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	3	1
Conflicting Approach Left SB	EB		
Conflicting Lanes Left	3	1	0
Conflicting Approach RighNB		EB	
Conflicting Lanes Right	1	0	1
HCM Control Delay	23.4	24.8	11.7
HCM LOS	C	C	B

Lane	NBLn1 EBLn1 SBLn1 SBLn2 SBLn3				
Vol Left, \%	2%	93%	0%	0%	0%
Vol Thru, $\%$	98%	0%	100%	100%	0%
Vol Right, \%	0%	7%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	346	286	176	176	114
LT Vol	6	266	0	0	0
Through Vol	340	0	176	176	0
RT Vol	0	20	0	0	114
Lane Flow Rate	393	325	199	199	130
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.721	0.661	0.361	0.361	0.144
Departure Headway (Hd)	6.603	7.323	6.508	6.508	4.006
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	543	491	548	548	881
Service Time	4.392	5.1	4.299	4.299	1.795
HCM Lane V/C Ratio	0.724	0.662	0.363	0.363	0.148
HCM Control Delay	24.8	23.4	13	13	7.5
HCM Lane LOS	C	C	B	B	A
HCM 95th-tile Q	5.9	4.8	1.6	1.6	0.5

Intersection	
Intersection Delay, s/veh 13	
Intersection LOS	B

Lane	NBLn1 WBLn1 WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	47%
Vol Thru, \%	84%	0%	0%	53%
Vol Right, \%	16%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	37	8	319	363
LT Vol	0	8	0	169
Through Vol	31	0	0	194
RT Vol	6	0	319	0
Lane Flow Rate	41	9	351	399
Geometry Grp	2	7	7	2
Degree of Util (X)	0.061	0.015	0.482	0.553
Departure Headway (Hd)	5.39	6.165	4.954	4.991
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	668	577	722	718
Service Time	3.39	3.938	2.727	3.063
HCM Lane V/C Ratio	0.061	0.016	0.486	0.556
HCM Control Delay	8.7	9	12.3	14.1
HCM Lane LOS	A	A	B	B
HCM 95th-tile Q	0.2	0	2.6	3.4

Major/Minor	Major1	Major2			Minor1		
Conflicting Flow All	0	0	51	0	354	47	
\quad Stage 1	-	-	-	-	47	-	
Stage 2	-	-	-	-	307	-	
Critical Hdwy	-	-	4.13	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	-	-	2.227	-	3.527	3.327	
Pot Cap-1 Maneuver	-	-	1549	-	642	1019	
Stage 1	-	-	-	-	973	-	
Stage 2	-	-	-	-	744	-	
Platoon blocked, \%	-	-		-			
Mov Cap-1 Maneuver	-	-	1549	-	629	1019	
Mov Cap-2 Maneuver	-	-	-	-	629	-	
Stage 1	-	-	-	-	973	-	
Stage 2	-	-	-	-	728	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.9	9.7

HCMLOS A

Intersection						
Int Delay, s/veh	1.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{\imath}$			-	r	
Traffic Vol, veh/h	27	53	36	156	2	6
Future Vol, veh/h	27	53	36	156	2	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	61	61	61	61	61	61
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	44	87	59	256	3	10

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	1		4	
Traffic Vol, veh/h	13	64	142	5	13	43
Future Vol, veh/h	13	64	142	5	13	43
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	15	73	161	6	15	49

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	167	0	-	0	267	164	
Stage 1	-	-	-	-	164	-	
Stage 2	-	-	-	-	103	-	
Critical Hdwy	4.13	-	-	-	6.43	6.23	
Critical Hdwy Stg 1	-	-	-	-	5.43	-	
Critical Hdwy Stg 2	-	-	-	-	5.43	-	
Follow-up Hdwy	2.227	-	-	-3.527	3.327		
Pot Cap-1 Maneuver	1405	-	-	-	720	878	
\quad Stage 1	-	-	-	-	863	-	
Stage 2	-	-	-	-	919	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1405	-	-	-	712	878	
Mov Cap-2 Maneuver	-	-	-	-	712	-	
Stage 1	-	-	-	-	854	-	
Stage 2	-	-	-	-	919	-	

Approach	EB	WB	SB
HCM Control Delay, s	1.3	0	9.7

HCMLOS A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1405	-	-	-833
HCM Lane V/C Ratio	0.011	-	-	-0.076
HCM Control Delay (s)	7.6	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-
HC	0.2			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个食		\%	\uparrow		\%	\dagger		\%	$\hat{\beta}$	
Traffic Volume (veh/h)	33	50	2	89	24	555	0	74	102	472	61	21
Future Volume (veh/h)	33	50	2	89	24	555	0	74	102	472	61	21
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	41	62	2	110	30	685	0	91	126	583	75	26
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	59	910	29	139	540	477	2	212	294	321	695	241
Arrive On Green	0.03	0.26	0.26	0.08	0.31	0.31	0.00	0.31	0.31	0.18	0.53	0.53
Sat Flow, veh/h	1767	3485	112	1767	1763	1557	1767	693	960	1767	1309	454
Grp Volume(v), veh/h	41	31	33	110	30	685	0	0	217	583	0	101
Grp Sat Flow(s),veh/h/n	1767	1763	1834	1767	1763	1557	1767	0	1653	1767	0	1762
Q Serve(g_s), s	2.4	1.4	1.4	6.4	1.3	32.0	0.0	0.0	11.0	19.0	0.0	3.0
Cycle Q Clear(g_c), s	2.4	1.4	1.4	6.4	1.3	32.0	0.0	0.0	11.0	19.0	0.0	3.0
Prop In Lane	1.00		0.06	1.00		1.00	1.00		0.58	1.00		0.26
Lane Grp Cap(c), veh/h	59	460	479	139	540	477	2	0	506	321	0	936
V/C Ratio(X)	0.70	0.07	0.07	0.79	0.06	1.44	0.00	0.00	0.43	1.81	0.00	0.11
Avail Cap(c_a), veh/h	321	540	562	321	540	477	321	0	506	321	0	936
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	50.0	29.0	29.0	47.3	25.6	36.2	0.0	0.0	28.9	42.7	0.0	12.2
Incr Delay (d2), s/veh	13.8	0.1	0.1	9.7	0.0	208.1	0.0	0.0	2.6	378.4	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	1.3	0.6	0.6	3.1	0.5	39.3	0.0	0.0	4.7	42.0	0.0	1.2

Unsig. Movement Delay, s/veh

LnGrp Delay(d), s/veh	63.8	29.1	29.1	57.0	25.6	244.3	0.0	0.0	31.6	421.2	0.0	12.4
LnGrp LOS	E	C	C	E	C	F	A	A	C	F	A	B
Approach Vol, veh/h		105			825			217		684		
Approach Delay, s/veh		42.6			211.4			31.6		360.8		
Approach LOS	D			F			C		F			

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	23.5	36.5	12.7	31.8	0.0	60.0	8.0	36.5
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	19.0	32.0	19.0	32.0	19.0	32.0	19.0	32.0
Max Q Clear Time (g_c+I1), s	21.0	13.0	8.4	3.4	0.0	5.0	4.4	34.0
Green Ext Time (p_c), s	0.0	1.2	0.2	0.3	0.0	0.5	0.1	0.0

Intersection Summary

HCM 6th Ctrl Delay	236.2
HCM 6th LOS	F

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	r			-	个	
Traffic Vol, veh/h	0	0	4	0	0	70
Future Vol, veh/h	0	0	4	0	0	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	0	0	4	0	0	76

Major/Minor M	Minor2		Major1			
Conflicting Flow All	46	38	76	0	-	0
Stage 1	38	-	-	-	-	-
Stage 2	8	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-
Pot Cap-1 Maneuver	962	1031	1517	-	-	-
Stage 1	982	-	-	-	-	-
Stage 2	1012	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	959	1031	1517	-	-	-
Mov Cap-2 Maneuver	959	-	-	-	-	-
Stage 1	979	-	-	-	-	-
Stage 2	1012	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	0		7.4		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBL NBT EBLn1			1 SBT	
Capacity (veh/h)		1517	-	-	-	-
HCM Lane V/C Ratio		0.003	-	-	-	-
HCM Control Delay (s)		7.4	0	0	-	-
HCM Lane LOS		A	A	A	-	-
HCM 95th \%tile Q(veh)		0	-	-	-	-

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	「	${ }^{*}$	4	I'	*	4	「	${ }^{*}$	4	$\stackrel{1}{1}$
Traffic Volume (veh/h) 27	180	112	161	103	156	153	238	824	219	213	58
Future Volume (veh/h) 27	180	112	161	103	156	153	238	824	219	213	58
Initial Q $(Q b)$, veh 0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT) 1.00		0.94	1.00		0.97	0.99		0.96	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No			No			No	
Adj Sat Flow, veh/h/ln 1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h 28	188	117	168	107	162	159	248	858	228	222	0
Peak Hour Factor 0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, \% 3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h 52	311	249	214	481	394	593	685	747	421	737	
Arrive On Green 0.03	0.17	0.17	0.12	0.26	0.26	0.08	0.37	0.37	0.11	0.40	0.00
Sat Flow, veh/h 1767	1856	1483	1767	1856	1518	1767	1856	1508	1767	1856	1572
Grp Volume(v), veh/h 28	188	117	168	107	162	159	248	858	228	222	0
Grp Sat Flow(s),veh/h/ln1767	1856	1483	1767	1856	1518	1767	1856	1508	1767	1856	1572
Q Serve(g_s), s $\quad 1.2$	7.2	5.5	7.1	3.5	6.8	4.2	7.5	28.4	6.0	6.3	0.0
Cycle Q Clear(g_c), s 1.2	7.2	5.5	7.1	3.5	6.8	4.2	7.5	28.4	6.0	6.3	0.0
Prop In Lane 1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h 52	311	249	214	481	394	593	685	747	421	737	
V/C Ratio(X) 0.54	0.60	0.47	0.78	0.22	0.41	0.27	0.36	1.15	0.54	0.30	
Avail Cap(c_a), veh/h 140	471	377	955	1326	1086	694	685	747	587	737	
HCM Platoon Ratio 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh 36.8	29.6	28.9	32.8	22.3	23.6	12.9	17.6	19.7	12.7	15.9	0.0
Incr Delay (d2), s/veh 8.5	1.9	1.4	6.2	0.2	0.7	0.2	1.5	81.9	1.1	1.0	0.0
Initial Q Delay(d3), s/veh 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/lm0. 6	3.3	2.0	3.3	1.5	2.4	1.6	3.3	28.8	2.3	2.7	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d),s/veh 45.3	31.5	30.3	39.0	22.6	24.3	13.2	19.1	101.6	13.8	16.9	0.0
LnGrp LOS D	C	C	D	C	C	B	B	F	B	B	
Approach Vol, veh/h	333			437			1265			450	A
Approach Delay, s/veh	32.2			29.5			74.3			15.3	
Approach LOS	C			C			E			B	

Timer - Assigned Phs	2	3	4	5	6	7	8
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), $\$ 2.8$	32.9	13.8	17.4	10.6	35.0	6.7	24.4
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s 4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax.5.5	25.5	41.5	19.5	10.5	30.5	6.1	54.9
Max Q Clear Time (g_c +18, , s	30.4	9.1	9.2	6.2	8.3	3.2	8.8
Green Ext Time (p_c), s 0.4	0.0	0.5	1.0	0.2	1.2	0.0	2

Intersection Summary

HCM 6th Ctrl Delay	50.1
HCM 6th LOS	D

Notes

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\boldsymbol{M}			\uparrow	$\boldsymbol{\uparrow} \uparrow$	$\mathbf{~}$
Traffic Vol, veh/h	168	19	16	549	502	260
Future Vol, veh/h	168	19	16	549	502	260
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, $\%$	3	3	3	3	3	3
Mvmt Flow	177	20	17	578	528	274
Number of Lanes	1	0	0	1	2	1

Approach	EB	NB	SB
Opposing Approach			SB
Opposing Lanes	0	3	NB
Conflicting Approach Left SB	SB	1	
Conflicting Lanes Left	3	1	0
Conflicting Approach RighNB		EB	
Conflicting Lanes Right	1	0	1
HCM Control Delay	16.8	76.1	12
HCM LOS	C	F	B

Lane	NBLn1 EBLn1 SBLn1 SBLn2 SBLn3				
Vol Left, \%	3%	$\%$		00%	0%
Vol Thru, \%	97%	0%	100%	100%	0%
Vol Right, \%	0%	10%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	565	187	251	251	260
LT Vol	16	168	0	0	0
Through Vol	549	0	251	251	0
RT Vol	0	19	0	0	260
Lane Flow Rate	595	197	264	264	274
Geometry Grp	7	7	7	7	7
Degree of Util (X)	1.049	0.43	0.451	0.451	0.281
Departure Headway (Hd)	6.347	8.097	6.298	6.298	3.799
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	571	447	576	576	952
Service Time	4.089	5.797	3.998	3.998	1.499
HCM Lane V/C Ratio	1.042	0.441	0.458	0.458	0.288
HCM Control Delay	76.1	16.8	14.1	14.1	8
HCM Lane LOS	F	C	B	B	A
HCM 95th-tile Q	16.7	2.1	2.3	2.3	1.2

Intersection
Intersection Delay, s/veh23.5
Intersection LOS \quad C

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	16	\mathbf{r}	\hat{f}			\uparrow
Traffic Vol, veh/h	16	350	217	18	468	50
Future Vol, veh/h	16	350	217	18	468	50
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	16	361	224	19	482	52
Number of Lanes	1	1	1	0	0	1
Approach	WB		NB		SB	
Opposing Approach			SB	NB		
Opposing Lanes	0	1	1			
Conflicting Approach Left NB			WB			
Conflicting Lanes Left	1	0	2			
Conflicting Approach RighISB	WB					
Conflicting Lanes Right	1	2	0			
HCM Control Delay	17.1	13	32.7			
HCM LOS	C	B	D			

Lane	NBLn1WBLn1WBLn2 SBLn1			
Vol Left, \%	0%	100%	0%	90%
Vol Thru, \%	92%	0%	0%	10%
Vol Right, $\%$	8%	0%	100%	0%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	235	16	350	518
LT Vol	0	16	0	468
Through Vol	217	0	0	50
RT Vol	18	0	350	0
Lane Flow Rate	242	16	361	534
Geometry Grp	2	7	7	2
Degree of Util (X)	0.401	0.033	0.6	0.848
Departure Headway (Hd)	5.965	7.21	5.988	5.715
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	598	495	599	630
Service Time	4.041	4.98	3.757	3.775
HCM Lane V/C Ratio	0.405	0.032	0.603	0.848
HCM Control Delay	13	10.2	17.4	32.7
HCM Lane LOS	B	B	C	D
HCM 95th-tile Q	1.9	0.1	4	9.4

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	0253	0353	252
Stage 1	-	- -	252	-
Stage 2	-	- -	101	
Critical Hdwy	-	4.13	6.43	6.23
Critical Hdwy Stg 1	-	- -	- 5.43	-
Critical Hdwy Stg 2	-	- -	- 5.43	-
Follow-up Hdwy	-	- 2.227	- 3.527	3.327
Pot Cap-1 Maneuver	-	1306	643	784
Stage 1	-	- -	788	-
Stage 2	-	- -	- 921	-
Platoon blocked, \%	-	-	-	
Mov Cap-1 Maneuver	-	1306	- 640	784
Mov Cap-2 Maneuver	-	-	- 640	-
Stage 1	-	- -	- 788	-
Stage 2	-	- -	- 917	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0.4	9.9

HCMLOS A

Intersection						
Int Delay, s/veh	2.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\hat{7}$			\uparrow	1	
Traffic Vol, veh/h	173	1	2	70	55	33
Future Vol, veh/h	173	1	2	70	55	33
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	82	82	82	82	82	82
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	211	1	2	85	67	40

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	212	0	301	212
Stage 1	-	-	-	-	212	-
Stage 2	-	-	-	-	89	-
Critical Hdwy	-	-	4.13	-	6.43	6.23
Critical Hdwy Stg 1	-	-	-	-	5.43	-
Critical Hdwy Stg 2	-	-	-	-	5.43	-
Follow-up Hdwy	-	-	2.227	-	3.527	3.327
Pot Cap-1 Maneuver	-	-	1352	-	688	826
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	932	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1352	-	687	826
Mov Cap-2 Maneuver	-	-	-	-	687	-
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	930	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		10.8	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		733	-	-	1352	-
HCM Lane V/C Ratio		0.146	-	-	0.002	-
HCM Control Delay (s)		10.8	-	-	7.7	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.5	-	-	0	-

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	1		4	
Traffic Vol, veh/h	49	151	90	28	17	21
Future Vol, veh/h	49	151	90	28	17	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	64	199	118	37	22	28

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	155	0	- -	0	464	137
Stage 1	-	-	- -	-	137	-
Stage 2	-	-	- -	-	327	-
Critical Hdwy	4.13	-	- -	-	6.43	6.23
Critical Hdwy Stg 1	-	-	- -	-	5.43	-
Critical Hdwy Stg 2	-	-	- -	-	5.43	-
Follow-up Hdwy	2.227	-	- -	-	3.527	3.327
Pot Cap-1 Maneuver	1419	-	- -	-	555	909
Stage 1	-	-	- -	-	887	-
Stage 2	-	-	- -	-	728	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1419	-	- -	-	527	909
Mov Cap-2 Maneuver	-	-	- -	-	527	-
Stage 1	-	-	- -	-	842	-
Stage 2	-	-	- -	-	728	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.9		0		10.7	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		1419	-	-	-	686
HCM Lane V/C Ratio		0.045		-	-	0.073
HCM Control Delay (s)		7.7	0	-	-	10.7
HCM Lane LOS		A	A A	-	-	B
HCM 95th \%tile Q(veh)		0.1	A	-	-	0.2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 ${ }^{\text {P }}$		\%			${ }^{7}$	$\hat{\dagger}$		K	\uparrow	
Traffic Volume (veh/h)	7	36	2	103	50	400	1	58	128	479	67	13
Future Volume (veh/h)	7	36	2	103	50	400	1	58	128	479	67	13
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	1.00		0.98	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856	1856
Adj Flow Rate, veh/h	7	38	2	108	53	421	1	61	135	504	71	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	3	3	3	3	3	3	3	3	3	3	3	3
Cap, veh/h	16	610	32	136	436	380	2	119	264	548	817	161
Arrive On Green	0.01	0.18	0.18	0.08	0.25	0.25	0.00	0.24	0.24	0.31	0.54	0.54
Sat Flow, veh/h	1767	3403	177	1767	1763	1536	1767	507	1122	1767	1501	296
Grp Volume(v), veh/h	7	20	20	108	53	421	1	0	196	504	0	85
Grp Sat Flow(s),veh/h/ln	1767	1763	1817	1767	1763	1536	1767	0	1629	1767	0	1797
Q Serve(g_s), s	0.4	0.8	0.9	5.5	2.1	22.5	0.1	0.0	9.5	25.0	0.0	2.1
Cycle Q Clear(g_c), s	0.4	0.8	0.9	5.5	2.1	22.5	0.1	0.0	9.5	25.0	0.0	2.1
Prop In Lane	1.00		0.10	1.00		1.00	1.00		0.69	1.00		0.16
Lane Grp Cap(c), veh/h	16	316	326	136	436	380	2	0	384	548	0	978
V/C Ratio(X)	0.44	0.06	0.06	0.79	0.12	1.11	0.41	0.00	0.51	0.92	0.00	0.09
Avail Cap(c_a), veh/h	97	349	360	185	436	380	97	0	384	690	0	978
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	44.8	31.0	31.0	41.2	26.5	34.2	45.4	0.0	30.2	30.3	0.0	9.9
Incr Delay (d2), s/veh	18.4	0.1	0.1	15.1	0.1	78.7	85.2	0.0	4.8	15.3	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.2	0.4	0.4	2.9	0.9	16.3	0.1	0.0	4.2	12.6	0.0	0.8

Unsig. Movement Delay, s/veh

LnGrp Delay(d), s/veh	63.2	31.1	31.1	56.4	26.7	112.9	130.6	0.0	35.0	45.5	0.0
LnGrp LOS	E	C	C	E	C	F	F	A	C	D	A
Approach Vol, veh/h		47			582		197		B		
Approach Delay, s/veh		35.9			94.5			35.5		409	
Approach LOS	D			F			D		D		

Timer - Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration (G+Y+Rc), s	32.7	25.9	11.5	20.8	4.6	54.0	5.3	27.0
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Max Green Setting (Gmax), s	35.5	19.0	9.5	18.0	5.0	49.5	5.0	22.5
Max Q Clear Time (g_c+I1), s	27.0	11.5	7.5	2.9	2.1	4.1	2.4	24.5
Green Ext Time (p_c), s	1.2	0.6	0.0	0.1	0.0	0.5	0.0	0.0

Intersection Summary

HCM 6th Ctrl Delay	61.8
HCM 6th LOS	E

Intersection						
Int Delay, s/veh	8.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	r			-	个	
Traffic Vol, veh/h	70	4	0	0	0	0
Future Vol, veh/h	70	4	0	0	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	3	3	3	3
Mvmt Flow	73	4	0	0	0	0

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	1	1	1	0	-	0
\quad Stage 1	1	-	-	-	-	-
\quad Stage 2	0	-	-	-	-	-
Critical Hdwy	6.43	6.23	4.13	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.527	3.327	2.227	-	-	-
Pot Cap-1 Maneuver	1019	1081	1615	-	-	-
\quad Stage 1	1020	-	-	-	-	-
\quad Stage 2	-	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	1019	1081	1615	-	-	-
Mov Cap-2 Maneuver	1019	-	-	-	-	-
Stage 1	1020	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	8.8	0	0

HCMLOS A

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1615	-1022	-	-
HCM Lane V/C Ratio	-	-0.075	-	-
HCM Control Delay (s)	0	-	8.8	-
HCM Lane LOS	A	-	A	-
HCM 95th \%tile Q(veh)	0	-	0.2	-

[^0]: Notes: PCE - Passenger Car Equivalent

[^1]: Notes: AWSC - All way stop control

